IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0155395.html
   My bibliography  Save this article

Equivalences in Biological and Economical Systems: Peloton Dynamics and the Rebound Effect

Author

Listed:
  • Hugh Trenchard
  • Matjaz Perc

Abstract

An interdisciplinary bridge is proposed between principles of collective behavior in biological systems, particularly bicycle pelotons, and the economic phenomenon called the rebound effect. Two main equivalencies are proposed between aspects of peloton dynamics and aspects of energy service efficiencies and the rebound effect. Firstly, a threshold whereby weaker cyclists, up to maximal capacities, sustain speeds of pacesetters by drafting; equivalent to a threshold whereby consumers will not exceed maximum allocated budgets for energy services, costs for which are externally determined. Secondly, a threshold of peloton dynamics whereby, below this threshold, weaker cyclists share costly non-drafting positions, whereas above this threshold cyclists cannot share these positions but can sustain pacesetter speeds. This is in turn equivalent to the threshold in the context of energy service efficiency, whereby consumers will increase spending to the limit indicated by the rebound magnitude but not to their maximum allocated budgets. These thresholds are a consequence of the model equations, and the latter threshold is explained by consumer apprehension that existing energy efficiencies could disappear or be negative, when consumers would be over budget. This partly explains long term rebound increase, whereby consumers increase consumption as confidence rises that cost savings due to energy service efficiency is stable.

Suggested Citation

  • Hugh Trenchard & Matjaz Perc, 2016. "Equivalences in Biological and Economical Systems: Peloton Dynamics and the Rebound Effect," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0155395
    DOI: 10.1371/journal.pone.0155395
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155395
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0155395&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0155395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alchian, Armen A & Demsetz, Harold, 1972. "Production , Information Costs, and Economic Organization," American Economic Review, American Economic Association, vol. 62(5), pages 777-795, December.
    2. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    3. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    4. Trenchard, Hugh & Ratamero, Erick & Richardson, Ashlin & Perc, Matjaž, 2015. "A deceleration model for bicycle peloton dynamics and group sorting," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 24-34.
    5. John Foster, 2005. "From simplistic to complex systems in economics," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 29(6), pages 873-892, November.
    6. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    7. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    8. Trenchard, Hugh, 2015. "The peloton superorganism and protocooperative behavior," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 179-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria ANDRONIE & Laura MARIN, 2017. "Analogies in Environmental and Economic Systems: Growth Curve and Models," International Conference on Economic Sciences and Business Administration, Spiru Haret University, vol. 4(1), pages 20-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    2. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    3. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    4. Sylvain Weber & Mehdi Farsi, 2014. "Travel distance, fuel efficiency, and vehicle weight: An estimation of the rebound effect using individual data in Switzerland," IRENE Working Papers 14-03, IRENE Institute of Economic Research.
    5. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    6. Manuel Frondel & Colin Vance, 2018. "Drivers’ response to fuel taxes and efficiency standards: evidence from Germany," Transportation, Springer, vol. 45(3), pages 989-1001, May.
    7. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    8. Böhringer, Christoph & Rivers, Nicholas, 2021. "The energy efficiency rebound effect in general equilibrium," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    9. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    10. Greene, David L. & Sims, Charles B. & Muratori, Matteo, 2020. "Two trillion gallons: Fuel savings from fuel economy improvements to US light-duty vehicles, 1975–2018," Energy Policy, Elsevier, vol. 142(C).
    11. Hössinger, Reinhard & Link, Christoph & Sonntag, Axel & Stark, Juliane, 2017. "Estimating the price elasticity of fuel demand with stated preferences derived from a situational approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 154-171.
    12. Li, Jianglong & Li, Aijun & Xie, Xuan, 2018. "Rebound effect of transportation considering additional capital costs and input-output relationships: The role of subsistence consumption and unmet demand," Energy Economics, Elsevier, vol. 74(C), pages 441-455.
    13. Chen, Zhenni & Du, Huibin & Li, Jianglong & Southworth, Frank & Ma, Shoufeng, 2019. "Achieving low-carbon urban passenger transport in China: Insights from the heterogeneous rebound effect," Energy Economics, Elsevier, vol. 81(C), pages 1029-1041.
    14. Sun, Bixuan, 2018. "Heterogeneous direct rebound effect: Theory and evidence from the Energy Star program," Energy Economics, Elsevier, vol. 69(C), pages 335-349.
    15. Biying Yu & Junyi Zhang & Akimasa Fujiwara, 2016. "Who rebounds in the private transport sector? A comparative analysis between Beijing and Tokyo," Environment and Planning B, , vol. 43(3), pages 561-579, May.
    16. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    17. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    18. Rabindra Nepal & Muhammad Indra al Irsyad & Tooraj Jamasb, 2021. "Sectoral Electricity Demand and Direct Rebound Effects inNew Zealand," The Energy Journal, , vol. 42(4), pages 153-174, July.
    19. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    20. Liu, Hongxun & Du, Kerui & Li, Jianglong, 2019. "An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China's industrial energy demand," Energy Economics, Elsevier, vol. 80(C), pages 720-730.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0155395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.