IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0146845.html
   My bibliography  Save this article

Large-Scale Functional Networks Identified from Resting-State EEG Using Spatial ICA

Author

Listed:
  • Stéphane Sockeel
  • Denis Schwartz
  • Mélanie Pélégrini-Issac
  • Habib Benali

Abstract

Several methods have been applied to EEG or MEG signals to detect functional networks. In recent works using MEG/EEG and fMRI data, temporal ICA analysis has been used to extract spatial maps of resting-state networks with or without an atlas-based parcellation of the cortex. Since the links between the fMRI signal and the electromagnetic signals are not fully established, and to avoid any bias, we examined whether EEG alone was able to derive the spatial distribution and temporal characteristics of functional networks. To do so, we propose a two-step original method: 1) An individual multi-frequency data analysis including EEG-based source localisation and spatial independent component analysis, which allowed us to characterize the resting-state networks. 2) A group-level analysis involving a hierarchical clustering procedure to identify reproducible large-scale networks across the population. Compared with large-scale resting-state networks obtained with fMRI, the proposed EEG-based analysis revealed smaller independent networks thanks to the high temporal resolution of EEG, hence hierarchical organization of networks. The comparison showed a substantial overlap between EEG and fMRI networks in motor, premotor, sensory, frontal, and parietal areas. However, there were mismatches between EEG-based and fMRI-based networks in temporal areas, presumably resulting from a poor sensitivity of fMRI in these regions or artefacts in the EEG signals. The proposed method opens the way for studying the high temporal dynamics of networks at the source level thanks to the high temporal resolution of EEG. It would then become possible to study detailed measures of the dynamics of connectivity.

Suggested Citation

  • Stéphane Sockeel & Denis Schwartz & Mélanie Pélégrini-Issac & Habib Benali, 2016. "Large-Scale Functional Networks Identified from Resting-State EEG Using Spatial ICA," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
  • Handle: RePEc:plo:pone00:0146845
    DOI: 10.1371/journal.pone.0146845
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146845
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0146845&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0146845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yohan Attal & Denis Schwartz, 2013. "Assessment of Subcortical Source Localization Using Deep Brain Activity Imaging Model with Minimum Norm Operators: A MEG Study," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-14, March.
    2. Nikos K. Logothetis & Jon Pauls & Mark Augath & Torsten Trinath & Axel Oeltermann, 2001. "Neurophysiological investigation of the basis of the fMRI signal," Nature, Nature, vol. 412(6843), pages 150-157, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doungmo Goufo, Emile F. & Mbehou, Mohamed & Kamga Pene, Morgan M., 2018. "A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 170-176.
    2. Irene Neuner & Wolfram Kawohl & Jorge Arrubla & Tracy Warbrick & Konrad Hitz & Christine Wyss & Frank Boers & N Jon Shah, 2014. "Cortical Response Variation with Different Sound Pressure Levels: A Combined Event-Related Potentials and fMRI Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-14, October.
    3. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Phoebe Koundouri & Barbara Hammer & Ulrike Kuhl & Alina Velias, 2022. "Behavioral and Neuroeconomics of Environmental Values," DEOS Working Papers 2227, Athens University of Economics and Business.
    5. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    6. Simon A Overduin & Philip Servos, 2008. "Symmetric Sensorimotor Somatotopy," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-6, January.
    7. Amrita Pal & Jennifer A Ogren & Ravi S Aysola & Rajesh Kumar & Luke A Henderson & Ronald M Harper & Paul M Macey, 2021. "Insular functional organization during handgrip in females and males with obstructive sleep apnea," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
    8. Gavin Perry & Nathan W Taylor & Philippa C H Bothwell & Colette C Milbourn & Georgina Powell & Krish D Singh, 2020. "The gamma response to colour hue in humans: Evidence from MEG," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-21, December.
    9. Olsen, Carmen & Gold, Anna, 2018. "Future research directions at the intersection between cognitive neuroscience research and auditors’ professional skepticism," Journal of Accounting Literature, Elsevier, vol. 41(C), pages 127-141.
    10. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    11. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    12. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    13. Ani Eloyan & Shanshan Li & John Muschelli & Jim J Pekar & Stewart H Mostofsky & Brian S Caffo, 2014. "Analytic Programming with fMRI Data: A Quick-Start Guide for Statisticians Using R," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-13, February.
    14. Ai-Ling Hsu & Kun-Hsien Chou & Yi-Ping Chao & Hsin-Ya Fan & Changwei W Wu & Jyh-Horng Chen, 2016. "Physiological Contribution in Spontaneous Oscillations: An Approximate Quality-Assurance Index for Resting-State fMRI Signals," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    15. Jacob A. Westerberg & Jeffrey D. Schall & Geoffrey F. Woodman & Alexander Maier, 2023. "Feedforward attentional selection in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Richard Gast & Daniel Rose & Christoph Salomon & Harald E Möller & Nikolaus Weiskopf & Thomas R Knösche, 2019. "PyRates—A Python framework for rate-based neural simulations," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-26, December.
    17. Qingfang Liu & Yao Zhao & Sumedha Attanti & Joel L. Voss & Geoffrey Schoenbaum & Thorsten Kahnt, 2024. "Midbrain signaling of identity prediction errors depends on orbitofrontal cortex networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Kim, Sang-Yoon & Lim, Woochang, 2015. "Effect of small-world connectivity on fast sparsely synchronized cortical rhythms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 109-123.
    19. Adrián Ponce-Alvarez & Biyu J He & Patric Hagmann & Gustavo Deco, 2015. "Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    20. Marcus Görge Ullisch & Jürgen Johann Scheins & Christoph Weirich & Elena Rota Kops & Abdullah Celik & Lutz Tellmann & Tony Stöcker & Hans Herzog & Nadim Jon Shah, 2012. "MR-Based PET Motion Correction Procedure for Simultaneous MR-PET Neuroimaging of Human Brain," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0146845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.