IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0143831.html
   My bibliography  Save this article

What Do Eye Gaze Metrics Tell Us about Motor Imagery?

Author

Listed:
  • Elodie Poiroux
  • Christine Cavaro-Ménard
  • Stéphanie Leruez
  • Jean Michel Lemée
  • Isabelle Richard
  • Mickael Dinomais

Abstract

Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to “spy” on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.

Suggested Citation

  • Elodie Poiroux & Christine Cavaro-Ménard & Stéphanie Leruez & Jean Michel Lemée & Isabelle Richard & Mickael Dinomais, 2015. "What Do Eye Gaze Metrics Tell Us about Motor Imagery?," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-15, November.
  • Handle: RePEc:plo:pone00:0143831
    DOI: 10.1371/journal.pone.0143831
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143831
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0143831&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0143831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Randall Flanagan & Roland S. Johansson, 2003. "Action plans used in action observation," Nature, Nature, vol. 424(6950), pages 769-771, August.
    2. Arjan C ter Horst & Jonathan Cole & Rob van Lier & Bert Steenbergen, 2012. "The Effect of Chronic Deafferentation on Mental Imagery: A Case Study," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Foti & Deny Menghini & Laura Mandolesi & Francesca Federico & Stefano Vicari & Laura Petrosini, 2013. "Learning by Observation: Insights from Williams Syndrome," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
    2. Mahdi Khoramshahi & Ashwini Shukla & Stéphane Raffard & Benoît G Bardy & Aude Billard, 2016. "Role of Gaze Cues in Interpersonal Motor Coordination: Towards Higher Affiliation in Human-Robot Interaction," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-21, June.
    3. Jairo Perez-Osorio & Hermann J Müller & Eva Wiese & Agnieszka Wykowska, 2015. "Gaze Following Is Modulated by Expectations Regarding Others’ Action Goals," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    4. Ariel Goldstein & Ido Rivlin & Alon Goldstein & Yoni Pertzov & Ran R Hassin, 2020. "Predictions from masked motion with and without obstacles," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-35, November.
    5. Anne Keitel & Wolfgang Prinz & Moritz M Daum, 2014. "Perception of Individual and Joint Action in Infants and Adults," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    6. Claire Monroy & Marlene Meyer & Sarah Gerson & Sabine Hunnius, 2017. "Statistical learning in social action contexts," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-20, May.
    7. Joseph D Chisholm & Craig S Chapman & Marvin Amm & Walter F Bischof & Dan Smilek & Alan Kingstone, 2014. "A Cognitive Ethology Study of First- and Third-Person Perspectives," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    8. Christian Seegelke & Charmayne Mary Lee Hughes & Thomas Schack, 2013. "Simulating My Own or Others Action Plans? – Motor Representations, Not Visual Representations Are Recalled in Motor Memory," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    9. Ettore Ambrosini & Vasudevi Reddy & Annette de Looper & Marcello Costantini & Beatriz Lopez & C Sinigaglia, 2013. "Looking Ahead: Anticipatory Gaze and Motor Ability in Infancy," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.
    10. Dmitry Smirnov & Fanny Lachat & Tomi Peltola & Juha M Lahnakoski & Olli-Pekka Koistinen & Enrico Glerean & Aki Vehtari & Riitta Hari & Mikko Sams & Lauri Nummenmaa, 2017. "Brain-to-brain hyperclassification reveals action-specific motor mapping of observed actions in humans," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-23, December.
    11. Maurits Adam & Birgit Elsner, 2020. "The impact of salient action effects on 6-, 7-, and 11-month-olds’ goal-predictive gaze shifts for a human grasping action," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    12. Shuichiro Taya & David Windridge & Magda Osman, 2013. "Trained Eyes: Experience Promotes Adaptive Gaze Control in Dynamic and Uncertain Visual Environments," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    13. Miya K Rand & Sebastian Rentsch, 2016. "Eye-Hand Coordination during Visuomotor Adaptation with Different Rotation Angles: Effects of Terminal Visual Feedback," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-31, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0143831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.