IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0141360.html
   My bibliography  Save this article

Optimal Allocation of Node Capacity in Cascade-Robustness Networks

Author

Listed:
  • Zhen Chen
  • Jun Zhang
  • Wen-Bo Du
  • Oriol Lordan
  • Jiangjun Tang

Abstract

The robustness of large scale critical infrastructures, which can be modeled as complex networks, is of great significance. One of the most important means to enhance robustness is to optimize the allocation of resources. Traditional allocation of resources is mainly based on the topology information, which is neither realistic nor systematic. In this paper, we try to build a framework for searching for the most favorable pattern of node capacity allocation to reduce the vulnerability to cascading failures at a low cost. A nonlinear and multi-objective optimization model is proposed and tackled using a particle swarm optimization algorithm (PSO). It is found that the network becomes more robust and economical when less capacity is left on the heavily loaded nodes and the optimized network performs better resisting noise. Our work is helpful in designing a robust economical network.

Suggested Citation

  • Zhen Chen & Jun Zhang & Wen-Bo Du & Oriol Lordan & Jiangjun Tang, 2015. "Optimal Allocation of Node Capacity in Cascade-Robustness Networks," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-12, October.
  • Handle: RePEc:plo:pone00:0141360
    DOI: 10.1371/journal.pone.0141360
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141360
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141360&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0141360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andre A. Moreira & Jose S. Andrade Jr. & Hans J. Herrmann & Joseph O. Indekeu, "undated". "How to make a fragile network robust and vice versa," Working Papers CCSS-09-001, ETH Zurich, Chair of Systems Design.
    2. Wang, Bing & Tang, Huanwen & Guo, Chonghui & Xiu, Zhilong, 2006. "Entropy optimization of scale-free networks’ robustness to random failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 591-596.
    3. Huang, Wei & Chow, Tommy W.S., 2010. "Network topological optimization for packet routing using multi-objective simulated annealing method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 871-880.
    4. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    5. Du, Wen-Bo & Gao, Yang & Liu, Chen & Zheng, Zheng & Wang, Zhen, 2015. "Adequate is better: particle swarm optimization with limited-information," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 832-838.
    6. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2007. "Credit chains and bankruptcy propagation in production networks," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2061-2084, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Huang, Wencheng & Li, Linqing & Liu, Hongyi & Zhang, Rui & Xu, Minhao, 2021. "Defense resource allocation in road dangerous goods transportation network: A Self-Contained Girvan-Newman Algorithm and Mean Variance Model combined approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Wu, Taocheng & Wu, Jiajing & You, Wei, 2018. "Optimizing robustness of complex networks with heterogeneous node functions based on the Memetic Algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 143-153.
    4. Zhang, Xue-Jun & Xu, Guo-Qiang & Zhu, Yan-Bo & Xia, Yong-Xiang, 2016. "Cascade-robustness optimization of coupling preference in interconnected networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 123-129.
    5. Wang, Xin-Wei & Chen, Zhen & Han, Chao, 2016. "Scheduling for single agile satellite, redundant targets problem using complex networks theory," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 125-132.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    2. Berardi, Simone & Tedeschi, Gabriele, 2017. "From banks' strategies to financial (in)stability," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 255-272.
    3. Lenzu, Simone & Tedeschi, Gabriele, 2012. "Systemic risk on different interbank network topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4331-4341.
    4. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    5. Duan, Boping & Liu, Jing & Zhou, Mingxing & Ma, Liangliang, 2016. "A comparative analysis of network robustness against different link attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 144-153.
    6. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    7. Vitor H. P. Louzada & Fabio Daolio & Hans J. Herrmann & Marco Tomassini, "undated". "Smart rewiring for network robustness," Working Papers ETH-RC-14-004, ETH Zurich, Chair of Systems Design.
    8. Ou, Ruiqiu & Yang, Jianmei, 2012. "On structural properties of scale-free networks with finite size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 887-894.
    9. Aymeric Vié & Alfredo J. Morales, 2021. "How Connected is Too Connected? Impact of Network Topology on Systemic Risk and Collapse of Complex Economic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1327-1351, April.
    10. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    11. Milena Oehlers & Benjamin Fabian, 2021. "Graph Metrics for Network Robustness—A Survey," Mathematics, MDPI, vol. 9(8), pages 1-48, April.
    12. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    13. Zhang, Xue-Jun & Xu, Guo-Qiang & Zhu, Yan-Bo & Xia, Yong-Xiang, 2016. "Cascade-robustness optimization of coupling preference in interconnected networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 123-129.
    14. Vodák, Rostislav & Bíl, Michal & Sedoník, Jiří, 2015. "Network robustness and random processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 368-382.
    15. Aymeric Vi'e & Alfredo J. Morales, 2019. "How connected is too connected? Impact of network topology on systemic risk and collapse of complex economic systems," Papers 1912.09814, arXiv.org.
    16. Lordan, Oriol & Sallan, Jose M. & Escorihuela, Nuria & Gonzalez-Prieto, David, 2016. "Robustness of airline route networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 18-26.
    17. Sohn, Insoo, 2019. "A robust complex network generation method based on neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 593-601.
    18. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    19. Dong, Gaogao & Tian, Lixin & Du, Ruijin & Fu, Min & Stanley, H. Eugene, 2014. "Analysis of percolation behaviors of clustered networks with partial support–dependence relations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 370-378.
    20. Hao, Yucheng & Jia, Limin & Wang, Yanhui, 2020. "Edge attack strategies in interdependent scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0141360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.