IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0140071.html
   My bibliography  Save this article

Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models

Author

Listed:
  • Gonglin Yuan
  • Xiabin Duan
  • Wenjie Liu
  • Xiaoliang Wang
  • Zengru Cui
  • Zhou Sheng

Abstract

Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

Suggested Citation

  • Gonglin Yuan & Xiabin Duan & Wenjie Liu & Xiaoliang Wang & Zengru Cui & Zhou Sheng, 2015. "Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
  • Handle: RePEc:plo:pone00:0140071
    DOI: 10.1371/journal.pone.0140071
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140071
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0140071&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0140071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ju-liang Zhang & Yong Wang, 2003. "A new trust region method for nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(2), pages 283-298, November.
    2. Gonglin Yuan & Zengxin Wei & Qiumei Zhao, 2014. "A modified Polak–Ribière–Polyak conjugate gradient algorithm for large-scale optimization problems," IISE Transactions, Taylor & Francis Journals, vol. 46(4), pages 397-413.
    3. Gonglin Yuan & Zengxin Wei, 2010. "Convergence analysis of a modified BFGS method on convex minimizations," Computational Optimization and Applications, Springer, vol. 47(2), pages 237-255, October.
    4. Gonglin Yuan & Xiwen Lu, 2009. "A modified PRP conjugate gradient method," Annals of Operations Research, Springer, vol. 166(1), pages 73-90, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiantian Zhao & Wei Hong Yang, 2023. "A Nonlinear Conjugate Gradient Method Using Inexact First-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 502-530, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    2. Gonglin Yuan & Zhou Sheng & Wenjie Liu, 2016. "The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    3. Gonglin Yuan & Xiaoliang Wang & Zhou Sheng, 2020. "The Projection Technique for Two Open Problems of Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 590-619, August.
    4. Yong Li & Gonglin Yuan & Zengxin Wei, 2015. "A Limited-Memory BFGS Algorithm Based on a Trust-Region Quadratic Model for Large-Scale Nonlinear Equations," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-13, May.
    5. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    6. Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram & Ravina Sharma, 2023. "A Conjugate Gradient Method: Quantum Spectral Polak–Ribiére–Polyak Approach for Unconstrained Optimization Problems," Mathematics, MDPI, vol. 11(23), pages 1-14, December.
    7. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    8. Qi Tian & Xiaoliang Wang & Liping Pang & Mingkun Zhang & Fanyun Meng, 2021. "A New Hybrid Three-Term Conjugate Gradient Algorithm for Large-Scale Unconstrained Problems," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    9. S. Bojari & M. R. Eslahchi, 2020. "Global convergence of a family of modified BFGS methods under a modified weak-Wolfe–Powell line search for nonconvex functions," 4OR, Springer, vol. 18(2), pages 219-244, June.
    10. Gonglin Yuan & Zengxin Wei & Zhongxing Wang, 2013. "Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization," Computational Optimization and Applications, Springer, vol. 54(1), pages 45-64, January.
    11. Yong Li & Gonglin Yuan & Zhou Sheng, 2018. "An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
    12. Naoki Marumo & Takayuki Okuno & Akiko Takeda, 2023. "Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 84(3), pages 833-874, April.
    13. Hamid Esmaeili & Morteza Kimiaei, 2016. "A trust-region method with improved adaptive radius for systems of nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 109-125, February.
    14. Morteza Kimiaei & Farzad Rahpeymaii, 2019. "A new nonmonotone line-search trust-region approach for nonlinear systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 199-232, July.
    15. Keyvan Amini & Mushtak A. K. Shiker & Morteza Kimiaei, 2016. "A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations," 4OR, Springer, vol. 14(2), pages 133-152, June.
    16. Zexian Liu & Hongwei Liu, 2019. "An Efficient Gradient Method with Approximately Optimal Stepsize Based on Tensor Model for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 608-633, May.
    17. Hamid Esmaeili & Morteza Kimiaei, 2016. "A trust-region method with improved adaptive radius for systems of nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 109-125, February.
    18. Xianfeng Ding & Quan Qu & Xinyi Wang, 2021. "A modified filter nonmonotone adaptive retrospective trust region method," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.
    19. Neculai Andrei, 2018. "A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 191-218, July.
    20. S. Bellavia & B. Morini & E. Riccietti, 2016. "On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation," Computational Optimization and Applications, Springer, vol. 64(1), pages 1-30, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0140071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.