IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0133185.html
   My bibliography  Save this article

Physical Forces between Humans and How Humans Attract and Repel Each Other Based on Their Social Interactions in an Online World

Author

Listed:
  • Stefan Thurner
  • Benedikt Fuchs

Abstract

Physical interactions between particles are the result of the exchange of gauge bosons. Human interactions are mediated by the exchange of messages, goods, money, promises, hostilities, etc. While in the physical world interactions and their associated forces have immediate dynamical consequences (Newton’s laws) the situation is not clear for human interactions. Here we quantify the relative acceleration between humans who interact through the exchange of messages, goods and hostilities in a massive multiplayer online game. For this game we have complete information about all interactions (exchange events) between about 430,000 players, and about their trajectories (movements) in the metric space of the game universe at any point in time. We use this information to derive “interaction potentials" for communication, trade and attacks and show that they are harmonic in nature. Individuals who exchange messages and trade goods generally attract each other and start to separate immediately after exchange events end. The form of the interaction potential for attacks mirrors the usual “hit-and-run" tactics of aggressive players. By measuring interaction intensities as a function of distance, velocity and acceleration, we show that “forces" between players are directly related to the number of exchange events. We find an approximate power-law decay of the likelihood for interactions as a function of distance, which is in accordance with previous real world empirical work. We show that the obtained potentials can be understood with a simple model assuming an exchange-driven force in combination with a distance-dependent exchange rate.

Suggested Citation

  • Stefan Thurner & Benedikt Fuchs, 2015. "Physical Forces between Humans and How Humans Attract and Repel Each Other Based on Their Social Interactions in an Online World," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-13, July.
  • Handle: RePEc:plo:pone00:0133185
    DOI: 10.1371/journal.pone.0133185
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133185
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0133185&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0133185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lambiotte, Renaud & Blondel, Vincent D. & de Kerchove, Cristobald & Huens, Etienne & Prieur, Christophe & Smoreda, Zbigniew & Van Dooren, Paul, 2008. "Geographical dispersal of mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5317-5325.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Unchitta Kan & Jericho McLeod & Eduardo López, 2024. "Non-coresident family as a driver of migration change in a crisis: the case of the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    2. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    3. Michele Coscia & Ricardo Hausmann, 2015. "Evidence That Calls-Based and Mobility Networks Are Isomorphic," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-15, December.
    4. Adam, Arnaud & Finance, Olivier & Thomas, Isabelle, 2021. "Monitoring trucks to reveal Belgian geographical structures and dynamics: From GPS traces to spatial interactions," Journal of Transport Geography, Elsevier, vol. 91(C).
    5. Wu, Jieyu & Shao, Xinyu & Li, Jinhang & Huang, Gang, 2012. "Scale-free properties of information flux networks in genetic algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1692-1701.
    6. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
    7. David Laniado & Yana Volkovich & Salvatore Scellato & Cecilia Mascolo & Andreas Kaltenbrunner, 2018. "The Impact of Geographic Distance on Online Social Interactions," Information Systems Frontiers, Springer, vol. 20(6), pages 1203-1218, December.
    8. Christoph Stich & Emmanouil Tranos & Mirco Musolesi & Sune Lehmann, 2022. "The role of space, time and sociability in predicting social encounters," Environment and Planning B, , vol. 49(2), pages 619-636, February.
    9. Johannes Illenberger & Kai Nagel & Gunnar Flötteröd, 2013. "The Role of Spatial Interaction in Social Networks," Networks and Spatial Economics, Springer, vol. 13(3), pages 255-282, September.
    10. Christophe Sohn & Julien Licheron & Evert Meijers, 2022. "Border cities: Out of the shadow," Papers in Regional Science, Wiley Blackwell, vol. 101(2), pages 417-438, April.
    11. Fernando Peruani & Lionel Tabourier, 2011. "Directedness of Information Flow in Mobile Phone Communication Networks," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-9, December.
    12. Zhou, Bin & Xu, Xiao-Ting & Liu, Jian-Guo & Xu, Xiao-Ke & Wang, Nianxin, 2019. "Information interaction model for the mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1170-1176.
    13. Steenbruggen, John & Tranos, Emmanouil & Nijkamp, Peter, 2015. "Data from mobile phone operators: A tool for smarter cities?," Telecommunications Policy, Elsevier, vol. 39(3), pages 335-346.
    14. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    15. Gergő Tóth & Sándor Juhász & Zoltán Elekes & Balázs Lengyel, 2021. "Repeated collaboration of inventors across European regions," European Planning Studies, Taylor & Francis Journals, vol. 29(12), pages 2252-2272, December.
    16. Wang, Xi & Pei, Tao & Song, Ci & Chen, Jie & Shu, Hua & Liu, Yaxi & Guo, Sihui & Chen, Xiao, 2023. "How does socioeconomic status influence social relations? A perspective from mobile phone data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    17. Sascha Holzhauer & Friedrich Krebs & Andreas Ernst, 2013. "Considering baseline homophily when generating spatial social networks for agent-based modelling," Computational and Mathematical Organization Theory, Springer, vol. 19(2), pages 128-150, June.
    18. Meysam Alizadeh & Claudio Cioffi-Revilla & Andrew Crooks, 2017. "Generating and analyzing spatial social networks," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 362-390, September.
    19. György Csomós & Zsófia Viktória Vida & Balázs Lengyel, 2020. "Exploring the changing geographical pattern of international scientific collaborations through the prism of cities," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    20. Steenbruggen, John & Borzacchiello, Maria Teresa & Nijkamp, Peter & Scholten, Henk, 2013. "Data from telecommunication networks for incident management: An exploratory review on transport safety and security," Transport Policy, Elsevier, vol. 28(C), pages 86-102.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0133185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.