IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v49y2022i2p619-636.html
   My bibliography  Save this article

The role of space, time and sociability in predicting social encounters

Author

Listed:
  • Christoph Stich

    (University of Birmingham, UK)

  • Emmanouil Tranos

    (University of Bristol, UK)

  • Mirco Musolesi

    (University College London, UK)

  • Sune Lehmann

Abstract

Space, time and the social realm are intrinsically linked. While an array of studies have tried to untangle these factors and their influence on human behaviour, hardly any have taken their effects into account at the same time. To disentangle these factors, we try to predict future encounters between students and assess how important social, spatial and temporal features are for prediction. We phrase our problem of predicting future encounters as a link-prediction problem and utilise set of Random Forest predictors for the prediction task. We use data collected by the Copenhagen network study; a study unique in scope and scale and tracks 847 students via mobile phones over the course of a whole academic year. We find that network and social features hold the highest discriminatory power for predicting future encounters.

Suggested Citation

  • Christoph Stich & Emmanouil Tranos & Mirco Musolesi & Sune Lehmann, 2022. "The role of space, time and sociability in predicting social encounters," Environment and Planning B, , vol. 49(2), pages 619-636, February.
  • Handle: RePEc:sae:envirb:v:49:y:2022:i:2:p:619-636
    DOI: 10.1177/23998083211016871
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083211016871
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083211016871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vedran Sekara & Sune Lehmann, 2014. "The Strength of Friendship Ties in Proximity Sensor Data," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    2. Lambiotte, Renaud & Blondel, Vincent D. & de Kerchove, Cristobald & Huens, Etienne & Prieur, Christophe & Smoreda, Zbigniew & Van Dooren, Paul, 2008. "Geographical dispersal of mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5317-5325.
    3. Kowald, Matthias & van den Berg, Pauline & Frei, Andreas & Carrasco, Juan-Antonio & Arentze, Theo & Axhausen, Kay & Mok, Diana & Timmermans, Harry & Wellman, Barry, 2013. "Distance patterns of personal networks in four countries: a comparative study," Journal of Transport Geography, Elsevier, vol. 31(C), pages 236-248.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    2. Giancarlos Parady & Kiyoshi Takami & Noboru Harata, 2021. "Egocentric social networks and social interactions in the Greater Tokyo Area," Transportation, Springer, vol. 48(2), pages 831-856, April.
    3. Michele Coscia & Ricardo Hausmann, 2015. "Evidence That Calls-Based and Mobility Networks Are Isomorphic," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-15, December.
    4. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
    5. van den Berg, Pauline & Weijs-Perrée, Minou & Arentze, Theo, 2018. "Dynamics in social activity-travel patterns: Analyzing the role of life-cycle events and path dependence in face-to-face and ICT-mediated social interactions," Research in Transportation Economics, Elsevier, vol. 68(C), pages 29-37.
    6. Christophe Sohn & Julien Licheron & Evert Meijers, 2022. "Border cities: Out of the shadow," Papers in Regional Science, Wiley Blackwell, vol. 101(2), pages 417-438, April.
    7. Maness, Michael & Cirillo, Cinzia & Dugundji, Elenna R., 2015. "Generalized behavioral framework for choice models of social influence: Behavioral and data concerns in travel behavior," Journal of Transport Geography, Elsevier, vol. 46(C), pages 137-150.
    8. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    9. Gergő Tóth & Sándor Juhász & Zoltán Elekes & Balázs Lengyel, 2021. "Repeated collaboration of inventors across European regions," European Planning Studies, Taylor & Francis Journals, vol. 29(12), pages 2252-2272, December.
    10. Han, Chenglin & Luo, Lichen & Parady, Giancarlos & Takami, Kiyoshi & Chikaraishi, Makoto & Harata, Noboru, 2023. "Modeling joint eating-out destination choices incorporating group-level impedance: A case study of the Greater Tokyo Area," Journal of Transport Geography, Elsevier, vol. 111(C).
    11. Sascha Holzhauer & Friedrich Krebs & Andreas Ernst, 2013. "Considering baseline homophily when generating spatial social networks for agent-based modelling," Computational and Mathematical Organization Theory, Springer, vol. 19(2), pages 128-150, June.
    12. Meysam Alizadeh & Claudio Cioffi-Revilla & Andrew Crooks, 2017. "Generating and analyzing spatial social networks," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 362-390, September.
    13. Przemyslaw A Grabowicz & José J Ramasco & Bruno Gonçalves & Víctor M Eguíluz, 2014. "Entangling Mobility and Interactions in Social Media," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
    14. Pauline Berg & Theo Arentze & Harry Timmermans, 2015. "A multilevel analysis of factors influencing local social interaction," Transportation, Springer, vol. 42(5), pages 807-826, September.
    15. Andrés Leiva-Araos & Héctor Allende-Cid, 2021. "A Hierarchical Fuzzy-Based Correction Algorithm for the Neighboring Network Hit Problem," Mathematics, MDPI, vol. 9(4), pages 1-36, February.
    16. Jun Gui & Zeyu Zheng & Dianzheng Fu & Zihao Yang & Yuan Gao & Zhi Liu, 2020. "Dynamics of calling activity to toll-free numbers in China," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-16, March.
    17. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    18. van den Berg, Pauline & Sharmeen, Fariya & Weijs-Perrée, Minou, 2017. "On the subjective quality of social Interactions: Influence of neighborhood walkability, social cohesion and mobility choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 309-319.
    19. Yang, Xu-Hua & Chen, Guang & Chen, Sheng-Yong & Wang, Wan-Liang & Wang, Lei, 2014. "Study on some bus transport networks in China with considering spatial characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 1-10.
    20. Frank Goetzke & Regine Gerike & Antonio Páez & Elenna Dugundji, 2015. "Social interactions in transportation: analyzing groups and spatial networks," Transportation, Springer, vol. 42(5), pages 723-731, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:49:y:2022:i:2:p:619-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.