IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0001322.html
   My bibliography  Save this article

Quantifying the Emergence of Dengue in Hanoi, Vietnam: 1998–2009

Author

Listed:
  • Hoang Quoc Cuong
  • Nguyen Tran Hien
  • Tran Nhu Duong
  • Tran Vu Phong
  • Nguyen Nhat Cam
  • Jeremy Farrar
  • Vu Sinh Nam
  • Khoa T D Thai
  • Peter Horby

Abstract

Background: An estimated 2.4 billion people live in areas at risk of dengue transmission, therefore the factors determining the establishment of endemic dengue in areas where transmission suitability is marginal is of considerable importance. Hanoi, Vietnam is such an area, and following a large dengue outbreak in 2009, we set out to determine if dengue is emerging in Hanoi. Methods and Principal Findings: We undertook a temporal and spatial analysis of 25,983 dengue cases notified in Hanoi between 1998 and 2009. Age standardized incidence rates, standardized age of infection, and Standardized Morbidity Ratios (SMR) were calculated. A quasi-Poisson regression model was used to determine if dengue incidence was increasing over time. Wavelet analysis was used to explore the periodicity of dengue transmission and the association with climate variables. After excluding the two major outbreak years of 1998 and 2009 and correcting for changes in population age structure, we identified a significant annual increase in the incidence of dengue cases over the period 1999–2008 (incidence rate ratio = 1.38, 95% confidence interval = 1.20–1.58, p value = 0.002). The age of notified dengue cases in Hanoi is high, with a median age of 23 years (mean 26.3 years). After adjusting for changes in population age structure, there was no statistically significant change in the median or mean age of dengue cases over the period studied. Districts in the central, highly urban, area of Hanoi have the highest incidence of dengue (SMR>3). Conclusions: Hanoi is a low dengue transmission setting where dengue incidence has been increasing year on year since 1999. This trend needs to be confirmed with serological surveys, followed by studies to determine the underlying drivers of this emergence. Such studies can provide insights into the biological, demographic, and environmental changes associated with vulnerability to the establishment of endemic dengue. Author Summary: Dengue is the most common vector-borne viral disease of humans, causing an estimated 50 million cases per year. The number of countries affected by dengue has increased dramatically in the last 50 years and dengue is now a major public health problem in large parts of the tropical and subtropical world. It is of considerable importance to understand the factors that determine how dengue becomes newly established in areas where the risk of dengue was previously small. Hanoi in North Vietnam is a large city where dengue appears to be emerging. We analyzed 12 years of dengue surveillance data in order to characterize the temporal and spatial epidemiology of dengue in Hanoi and to establish if dengue incidence has been increasing. After excluding the two major outbreak years of 1998 and 2009 and correcting for changes in population age structure over time, we found there was a significant annual increase in the incidence of notified dengue cases over the period 1999–2008. Dengue cases were concentrated in young adults in the highly urban central areas of Hanoi. This study indicates that dengue transmission is increasing in Hanoi and provides a platform for further studies of the underlying drivers of this emergence.

Suggested Citation

  • Hoang Quoc Cuong & Nguyen Tran Hien & Tran Nhu Duong & Tran Vu Phong & Nguyen Nhat Cam & Jeremy Farrar & Vu Sinh Nam & Khoa T D Thai & Peter Horby, 2011. "Quantifying the Emergence of Dengue in Hanoi, Vietnam: 1998–2009," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 5(9), pages 1-7, September.
  • Handle: RePEc:plo:pntd00:0001322
    DOI: 10.1371/journal.pntd.0001322
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001322
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0001322&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0001322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael A Johansson & Derek A T Cummings & Gregory E Glass, 2009. "Multiyear Climate Variability and Dengue—El Niño Southern Oscillation, Weather, and Dengue Incidence in Puerto Rico, Mexico, and Thailand: A Longitudinal Data Analysis," PLOS Medicine, Public Library of Science, vol. 6(11), pages 1-9, November.
    2. Bernard Cazelles & Mario Chavez & Anthony J McMichael & Simon Hales, 2005. "Nonstationary Influence of El Niño on the Synchronous Dengue Epidemics in Thailand," PLOS Medicine, Public Library of Science, vol. 2(4), pages 1-1, April.
    3. Ole Wichmann & In-Kyu Yoon & Sirenda Vong & Kriengsak Limkittikul & Robert V Gibbons & Mammen P Mammen & Sowath Ly & Philippe Buchy & Chukiat Sirivichayakul & Rome Buathong & Rekol Huy & G William Let, 2011. "Dengue in Thailand and Cambodia: An Assessment of the Degree of Underrecognized Disease Burden Based on Reported Cases," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 5(3), pages 1-9, March.
    4. Louis Lambrechts & Thomas W Scott & Duane J Gubler, 2010. "Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 4(5), pages 1-9, May.
    5. Derek A.T. Cummings & Rafael A. Irizarry & Norden E. Huang & Timothy P. Endy & Ananda Nisalak & Kumnuan Ungchusak & Donald S. Burke, 2004. "Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand," Nature, Nature, vol. 427(6972), pages 344-347, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taynãna C Simões & Cláudia T Codeço & Aline A Nobre & Álvaro E Eiras, 2013. "Modeling the Non-Stationary Climate Dependent Temporal Dynamics of Aedes aegypti," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    2. Ting-Wu Chuang & Luis Fernando Chaves & Po-Jiang Chen, 2017. "Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-20, June.
    3. Julián Alfredo Fernández-Niño & Claudia Iveth Astudillo-García & Ietza Bojorquez-Chapela & Evangelina Morales-Carmona & Airain Alejandra Montoya-Rodriguez & Lina Sofia Palacio-Mejia, 2016. "The Mexican Cycle of Suicide: A National Analysis of Seasonality, 2000-2013," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    4. Hai-Yan Xu & Xiuju Fu & Lionel Kim Hock Lee & Stefan Ma & Kee Tai Goh & Jiancheng Wong & Mohamed Salahuddin Habibullah & Gary Kee Khoon Lee & Tian Kuay Lim & Paul Anantharajah Tambyah & Chin Leong Lim, 2014. "Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 8(5), pages 1-11, May.
    5. Erickson, Richard A. & Presley, Steven M. & Allen, Linda J.S. & Long, Kevin R. & Cox, Stephen B., 2010. "A dengue model with a dynamic Aedes albopictus vector population," Ecological Modelling, Elsevier, vol. 221(24), pages 2899-2908.
    6. Kraisak Kesorn & Phatsavee Ongruk & Jakkrawarn Chompoosri & Atchara Phumee & Usavadee Thavara & Apiwat Tawatsin & Padet Siriyasatien, 2015. "Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    7. Jiao Zhang & Qingcheng Zeng, 2017. "Modelling the volatility of the tanker freight market based on improved empirical mode decomposition," Applied Economics, Taylor & Francis Journals, vol. 49(17), pages 1655-1667, April.
    8. Phaisarn Jeefoo & Nitin Kumar Tripathi & Marc Souris, 2010. "Spatio-Temporal Diffusion Pattern and Hotspot Detection of Dengue in Chachoengsao Province, Thailand," IJERPH, MDPI, vol. 8(1), pages 1-24, December.
    9. Asim Anwar & Noman Khan & Muhammad Ayub & Faisal Nawaz & Asim Shah & Antoine Flahault, 2019. "Modeling and Predicting Dengue Incidence in Highly Vulnerable Countries using Panel Data Approach," IJERPH, MDPI, vol. 16(13), pages 1-8, June.
    10. Quirine A ten Bosch & Brajendra K Singh & Muhammad R A Hassan & Dave D Chadee & Edwin Michael, 2016. "The Role of Serotype Interactions and Seasonality in Dengue Model Selection and Control: Insights from a Pattern Matching Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(5), pages 1-25, May.
    11. Pablo Méndez-Lázaro & Frank E. Muller-Karger & Daniel Otis & Matthew J. McCarthy & Marisol Peña-Orellana, 2014. "Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico," IJERPH, MDPI, vol. 11(9), pages 1-20, September.
    12. Nicholas G. Reich & Justin Lessler & Krzysztof Sakrejda & Stephen A. Lauer & Sopon Iamsirithaworn & Derek A. T. Cummings, 2016. "Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 285-292, July.
    13. Catherine A. Lippi & Anna M. Stewart-Ibarra & Ángel G. Muñoz & Mercy J. Borbor-Cordova & Raúl Mejía & Keytia Rivero & Katty Castillo & Washington B. Cárdenas & Sadie J. Ryan, 2018. "The Social and Spatial Ecology of Dengue Presence and Burden during an Outbreak in Guayaquil, Ecuador, 2012," IJERPH, MDPI, vol. 15(4), pages 1-15, April.
    14. Campi, Gaetano & Bianconi, Antonio, 2022. "Periodic recurrent waves of Covid-19 epidemics and vaccination campaign," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    16. Bernard Bett & Delia Grace & Hu Suk Lee & Johanna Lindahl & Hung Nguyen-Viet & Pham-Duc Phuc & Nguyen Huu Quyen & Tran Anh Tu & Tran Dac Phu & Dang Quang Tan & Vu Sinh Nam, 2019. "Spatiotemporal analysis of historical records (2001–2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-22, November.
    17. Albert C Yang & Jong-Ling Fuh & Norden E Huang & Ben-Chang Shia & Chung-Kang Peng & Shuu-Jiun Wang, 2011. "Temporal Associations between Weather and Headache: Analysis by Empirical Mode Decomposition," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-6, January.
    18. Yoon Ling Cheong & Katrin Burkart & Pedro J. Leitão & Tobia Lakes, 2013. "Assessing Weather Effects on Dengue Disease in Malaysia," IJERPH, MDPI, vol. 10(12), pages 1-16, November.
    19. Dharmaratne Amarakoon & Anthony Chen & Sam Rawlins & Dave Chadee & Michael Taylor & Roxann Stennett, 2008. "Dengue epidemics in the Caribbean-temperature indices to gauge the potential for onset of dengue," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(4), pages 341-357, May.
    20. Chia-Hsien Lin & Tzai-Hung Wen, 2011. "Using Geographically Weighted Regression (GWR) to Explore Spatial Varying Relationships of Immature Mosquitoes and Human Densities with the Incidence of Dengue," IJERPH, MDPI, vol. 8(7), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0001322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.