IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005372.html
   My bibliography  Save this article

Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL)

Author

Listed:
  • Georgia Melagraki
  • Evangelos Ntougkos
  • Vagelis Rinotas
  • Christos Papaneophytou
  • Georgios Leonis
  • Thomas Mavromoustakos
  • George Kontopidis
  • Eleni Douni
  • Antreas Afantitis
  • George Kollias

Abstract

We present an in silico drug discovery pipeline developed and applied for the identification and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminformatics part of the pipeline was developed by combining structure–based with ligand–based modeling using the largest available set of known TNF inhibitors in the literature (2481 small molecules). To facilitate virtual screening, the consensus predictive model was made freely available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of these compounds led to the selection of two small molecules that act as potent direct inhibitors of TNF function, with IC50 values comparable to those of a previously-described direct inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identified as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct binding of the two compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also carried out for the two small molecules in each protein to offer additional insight into the interactions that govern TNF and RANKL complex formation. To our knowledge, these compounds, namely T8 and T23, constitute the second and third published examples of dual small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.Author summary: Developing drugs that disrupt protein-protein interactions (PPIs) is a difficult task in pharmaceutical research. The interaction between protein Tumor Necrosis Factor (TNF) and its receptors is implicated in several physiological functions and diseases, such as rheumatoid and psoriatic arthritis, Crohn’s disease, and multiple sclerosis. Despite their potency, current medications that block the interaction between TNF and its receptors are also associated with many adverse functions. Here, we employ comprehensive computational and experimental methods to discover novel small molecules that are direct inhibitors of TNF function. Functionality for RANKL, a second, clinically-relevant member of the TNF protein family, was also examined. Using a combination of an in silico drug discovery pipeline, which includes structure- and ligand-based modeling, and in vitro experiments, we identified compounds T8 and T23 as dual inhibitors of TNF and RANKL. These compounds present low toxicity and may be further optimized in drug design targeting TNF and RANKL to develop improved treatments for a range of inflammatory and autoimmune diseases.

Suggested Citation

  • Georgia Melagraki & Evangelos Ntougkos & Vagelis Rinotas & Christos Papaneophytou & Georgios Leonis & Thomas Mavromoustakos & George Kontopidis & Eleni Douni & Antreas Afantitis & George Kollias, 2017. "Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL)," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-27, April.
  • Handle: RePEc:plo:pcbi00:1005372
    DOI: 10.1371/journal.pcbi.1005372
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005372
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005372&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William S Sanders & C Ian Johnston & Susan M Bridges & Shane C Burgess & Kenneth O Willeford, 2011. "Prediction of Cell Penetrating Peptides by Support Vector Machines," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-12, July.
    2. Roy A. Black & Charles T. Rauch & Carl J. Kozlosky & Jacques J. Peschon & Jennifer L. Slack & Martin F. Wolfson & Beverly J. Castner & Kim L. Stocking & Pranitha Reddy & Subhashini Srinivasan & Nicole, 1997. "A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells," Nature, Nature, vol. 385(6618), pages 729-733, February.
    3. Sébastien Giguère & François Laviolette & Mario Marchand & Denise Tremblay & Sylvain Moineau & Xinxia Liang & Éric Biron & Jacques Corbeil, 2015. "Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
    4. Matthias Rupp & Matthias R Bauer & Rainer Wilcken & Andreas Lange & Michael Reutlinger & Frank M Boeckler & Gisbert Schneider, 2014. "Machine Learning Estimates of Natural Product Conformational Energies," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-8, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Maccari & Mariagrazia Di Luca & Riccardo Nifosí & Francesco Cardarelli & Giovanni Signore & Claudia Boccardi & Angelo Bifone, 2013. "Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    2. Jonathan Vandermause & Yu Xie & Jin Soo Lim & Cameron J. Owen & Boris Kozinsky, 2022. "Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Sofie Stalmans & Evelien Wynendaele & Nathalie Bracke & Bert Gevaert & Matthias D’Hondt & Kathelijne Peremans & Christian Burvenich & Bart De Spiegeleer, 2013. "Chemical-Functional Diversity in Cell-Penetrating Peptides," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    4. Alex D Herbert & Antony M Carr & Eva Hoffmann, 2014. "FindFoci: A Focus Detection Algorithm with Automated Parameter Training That Closely Matches Human Assignments, Reduces Human Inconsistencies and Increases Speed of Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-33, December.
    5. Marianna Yusupova & Roi Ankawa & Yahav Yosefzon & David Meiri & Ido Bachelet & Yaron Fuchs, 2023. "Apoptotic dysregulation mediates stem cell competition and tissue regeneration," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.