IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0112644.html
   My bibliography  Save this article

MM-MDS: A Multidimensional Scaling Database with Similarity Ratings for 240 Object Categories from the Massive Memory Picture Database

Author

Listed:
  • Michael C Hout
  • Stephen D Goldinger
  • Kyle J Brady

Abstract

Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures in recognition memory. Quantifying similarity, however, is challenging when everyday items are the desired stimulus set, particularly when researchers require several different pictures from the same category. In this article, we document a new multidimensional scaling database with similarity ratings for 240 categories, each containing color photographs of 16–17 exemplar objects. We collected similarity ratings using the spatial arrangement method. Reports include: the multidimensional scaling solutions for each category, up to five dimensions, stress and fit measures, coordinate locations for each stimulus, and two new classifications. For each picture, we categorized the item's prototypicality, indexed by its proximity to other items in the space. We also classified pairs of images along a continuum of similarity, by assessing the overall arrangement of each MDS space. These similarity ratings will be useful to any researcher that wishes to control the similarity of experimental stimuli according to an objective quantification of “sameness.”

Suggested Citation

  • Michael C Hout & Stephen D Goldinger & Kyle J Brady, 2014. "MM-MDS: A Multidimensional Scaling Database with Similarity Ratings for 240 Object Categories from the Massive Memory Picture Database," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
  • Handle: RePEc:plo:pone00:0112644
    DOI: 10.1371/journal.pone.0112644
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112644
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0112644&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0112644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    2. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kensuke Okada & Shin-ichi Mayekawa, 2018. "Post-processing of Markov chain Monte Carlo output in Bayesian latent variable models with application to multidimensional scaling," Computational Statistics, Springer, vol. 33(3), pages 1457-1473, September.
    2. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    3. Michael C. Hout & Corbin A. Cunningham & Arryn Robbins & Justin MacDonald, 2018. "Simulating the Fidelity of Data for Large Stimulus Set Sizes and Variable Dimension Estimation in Multidimensional Scaling," SAGE Open, , vol. 8(2), pages 21582440187, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas Clarkson & Richard Gonzalez, 2001. "Random effects diagonal metric multidimensional scaling models," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 25-43, March.
    2. Rolf Langeheine, 1982. "Statistical evaluation of measures of fit in the Lingoes-Borg procrustean individual differences scaling," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 427-442, December.
    3. Forrest Young & Yoshio Takane & Rostyslaw Lewyckyj, 1978. "Three notes on ALSCAL," Psychometrika, Springer;The Psychometric Society, vol. 43(3), pages 433-435, September.
    4. de Leeuw, Jan & Mair, Patrick, 2009. "Multidimensional Scaling Using Majorization: SMACOF in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i03).
    5. Richard Sands & Forrest Young, 1980. "Component models for three-way data: An alternating least squares algorithm with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 39-67, March.
    6. Kohn, Hans-Friedrich, 2006. "Combinatorial individual differences scaling within the city-block metric," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 931-946, November.
    7. Yoshio Takane & Forrest Young & Jan Leeuw, 1980. "An individual differences additive model: An alterating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 183-209, June.
    8. Christopher Hare & Keith T. Poole, 2015. "Measuring ideology in Congress," Chapters, in: Jac C. Heckelman & Nicholas R. Miller (ed.), Handbook of Social Choice and Voting, chapter 18, pages 327-346, Edward Elgar Publishing.
    9. Bolton, Patrick & Li, Tao & Ravina, Enrichetta & Rosenthal, Howard, 2020. "Investor ideology," Journal of Financial Economics, Elsevier, vol. 137(2), pages 320-352.
    10. Robert MacCallum, 1977. "Effects of conditionality on INDSCAL and ALSCAL weights," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 297-305, June.
    11. Adri Smaling & Geert Soete, 1992. "Reviews," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 451-457, September.
    12. Akinori Okada & Tadashi Imaizumi, 1997. "Asymmetric multidimensional scaling of two-mode three-way proximities," Journal of Classification, Springer;The Classification Society, vol. 14(2), pages 195-224, September.
    13. repec:jss:jstsof:31:i03 is not listed on IDEAS
    14. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    15. S. Hess & E. Suárez & J. Camacho & G. Ramírez & B. Hernández, 2001. "Reliability of Coordinates Obtained by MINISSA Concerning the Order of Presented Stimuli," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(2), pages 117-128, May.
    16. Husson, François & Josse, Julie & Saporta, Gilbert, 2016. "Jan de Leeuw and the French School of Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i06).
    17. Wedel, M. & Bijmolt, T.H.A., 1998. "Mixed Tree and Spatial Representation of Dissimilarity Judgments," Discussion Paper 1998-109, Tilburg University, Center for Economic Research.
    18. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    19. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    20. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2021. "Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 409-427, August.
    21. Elizabeth Hellier & Kirsteen Aldrich & Daniel B. Wright & Denny Daunt & Judy Edworthy, 2007. "A Multi Dimensional Analysis of Warning Signal Words," Journal of Risk Research, Taylor & Francis Journals, vol. 10(3), pages 323-338, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0112644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.