IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v57y1992i3p451-457.html
   My bibliography  Save this article

Reviews

Author

Listed:
  • Adri Smaling
  • Geert Soete

Abstract

No abstract is available for this item.

Suggested Citation

  • Adri Smaling & Geert Soete, 1992. "Reviews," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 451-457, September.
  • Handle: RePEc:spr:psycho:v:57:y:1992:i:3:p:451-457
    DOI: 10.1007/BF02295432
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02295432
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02295432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    2. Charles Jones, 1983. "A note on the use of directional statistics in weighted euclidean distances multidimensional scaling models," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 473-476, September.
    3. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    4. J. Carroll & Phipps Arabie, 1983. "Indclus: An individual differences generalization of the adclus model and the mapclus algorithm," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 157-169, June.
    5. J. Ramsay, 1977. "Maximum likelihood estimation in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 241-266, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohn, Hans-Friedrich, 2006. "Combinatorial individual differences scaling within the city-block metric," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 931-946, November.
    2. Douglas Clarkson & Richard Gonzalez, 2001. "Random effects diagonal metric multidimensional scaling models," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 25-43, March.
    3. Rolf Langeheine, 1982. "Statistical evaluation of measures of fit in the Lingoes-Borg procrustean individual differences scaling," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 427-442, December.
    4. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    5. Forrest Young & Yoshio Takane & Rostyslaw Lewyckyj, 1978. "Three notes on ALSCAL," Psychometrika, Springer;The Psychometric Society, vol. 43(3), pages 433-435, September.
    6. Michael C Hout & Stephen D Goldinger & Kyle J Brady, 2014. "MM-MDS: A Multidimensional Scaling Database with Similarity Ratings for 240 Object Categories from the Massive Memory Picture Database," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    7. Sagarra, Marti & Mar-Molinero, Cecilio & Agasisti, Tommaso, 2017. "Exploring the efficiency of Mexican universities: Integrating Data Envelopment Analysis and Multidimensional Scaling," Omega, Elsevier, vol. 67(C), pages 123-133.
    8. Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
    9. de Leeuw, Jan & Mair, Patrick, 2009. "Multidimensional Scaling Using Majorization: SMACOF in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i03).
    10. Richard Sands & Forrest Young, 1980. "Component models for three-way data: An alternating least squares algorithm with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 39-67, March.
    11. Terrence Dunn & Richard Harshman, 1982. "A multidimensional scaling model for the size-weight illusion," Psychometrika, Springer;The Psychometric Society, vol. 47(1), pages 25-45, March.
    12. J. Ramsey, 1986. "A PROC MATRIX program for preference-dissimilarity multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 51(1), pages 163-170, March.
    13. Suzanne Winsberg & Geert Soete, 1993. "A latent class approach to fitting the weighted Euclidean model, clascal," Psychometrika, Springer;The Psychometric Society, vol. 58(2), pages 315-330, June.
    14. Bocci, Laura & Vicari, Donatella & Vichi, Maurizio, 2006. "A mixture model for the classification of three-way proximity data," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1625-1654, April.
    15. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.
    16. J. Carroll & Geert Soete & Sandra Pruzansky, 1989. "An evaluation of five algorithms for generating an initial configuration for SINDSCAL," Journal of Classification, Springer;The Classification Society, vol. 6(1), pages 105-119, December.
    17. Vichi, Maurizio, 1998. "Principal classifications analysis: a method for generating consensus dendrograms and its application to three-way data," Computational Statistics & Data Analysis, Elsevier, vol. 27(3), pages 311-331, May.
    18. Yoshio Takane & J. Carroll, 1981. "Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 389-405, December.
    19. Paolo Giordani & Henk Kiers, 2012. "FINDCLUS: Fuzzy INdividual Differences CLUStering," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 170-198, July.
    20. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:57:y:1992:i:3:p:451-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.