IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0109293.html
   My bibliography  Save this article

Self-Organization on Social Media: Endo-Exo Bursts and Baseline Fluctuations

Author

Listed:
  • Mizuki Oka
  • Yasuhiro Hashimoto
  • Takashi Ikegami

Abstract

A salient dynamic property of social media is bursting behavior. In this paper, we study bursting behavior in terms of the temporal relation between a preceding baseline fluctuation and the successive burst response using a frequency time series of 3,000 keywords on Twitter. We found that there is a fluctuation threshold up to which the burst size increases as the fluctuation increases and that above the threshold, there appears a variety of burst sizes. We call this threshold the critical threshold. Investigating this threshold in relation to endogenous bursts and exogenous bursts based on peak ratio and burst size reveals that the bursts below this threshold are endogenously caused and above this threshold, exogenous bursts emerge. Analysis of the 3,000 keywords shows that all the nouns have both endogenous and exogenous origins of bursts and that each keyword has a critical threshold in the baseline fluctuation value to distinguish between the two. Having a threshold for an input value for activating the system implies that Twitter is an excitable medium. These findings are useful for characterizing how excitable a keyword is on Twitter and could be used, for example, to predict the response to particular information on social media.

Suggested Citation

  • Mizuki Oka & Yasuhiro Hashimoto & Takashi Ikegami, 2014. "Self-Organization on Social Media: Endo-Exo Bursts and Baseline Fluctuations," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
  • Handle: RePEc:plo:pone00:0109293
    DOI: 10.1371/journal.pone.0109293
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109293
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0109293&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0109293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Márton Mestyán & Taha Yasseri & János Kertész, 2013. "Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Aguilera, 2018. "Rhythms of the Collective Brain: Metastable Synchronization and Cross-Scale Interactions in Connected Multitudes," Complexity, Hindawi, vol. 2018, pages 1-9, March.
    2. Stevens, T.M. & Aarts, N. & Termeer, C.J.A.M. & Dewulf, A., 2018. "Social media hypes about agro-food issues: Activism, scandals and conflicts," Food Policy, Elsevier, vol. 79(C), pages 23-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyekyung Woo & Youngtae Cho & Eunyoung Shim & Kihwang Lee & Gilyoung Song, 2015. "Public Trauma after the Sewol Ferry Disaster: The Role of Social Media in Understanding the Public Mood," IJERPH, MDPI, vol. 12(9), pages 1-10, September.
    2. Letchford, Adrian & Preis, Tobias & Moat, Helen Susannah, 2016. "The advantage of simple paper abstracts," Journal of Informetrics, Elsevier, vol. 10(1), pages 1-8.
    3. Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019. "Noise traders and smart money: Evidence from online searches," Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
    4. Daniele Barchiesi & Helen Susannah Moat & Christian Alis & Steven Bishop & Tobias Preis, 2015. "Quantifying International Travel Flows Using Flickr," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-8, July.
    5. Andreas Spitz & Emőke-Ágnes Horvát, 2014. "Measuring Long-Term Impact Based on Network Centrality: Unraveling Cinematic Citations," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    6. Jeon, Hongjun & Seo, Wonchul & Park, Eunjeong & Choi, Sungchul, 2020. "Hybrid machine learning approach for popularity prediction of newly released contents of online video streaming services," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    7. Shota Saito & Yoshito Hirata & Kazutoshi Sasahara & Hideyuki Suzuki, 2015. "Tracking Time Evolution of Collective Attention Clusters in Twitter: Time Evolving Nonnegative Matrix Factorisation," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-17, September.
    8. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    9. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    10. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    11. Kim, Taegu & Hong, Jungsik & Kang, Pilsung, 2015. "Box office forecasting using machine learning algorithms based on SNS data," International Journal of Forecasting, Elsevier, vol. 31(2), pages 364-390.
    12. Pantelis Loupos & Yvette Peng & Sute Li & Hao Hao, 2023. "What reviews foretell about opening weekend box office revenue: the harbinger of failure effect in the movie industry," Marketing Letters, Springer, vol. 34(3), pages 513-534, September.
    13. Yi Liao & Yuxuan Peng & Songlin Shi & Victor Shi & Xiaohong Yu, 2022. "Early box office prediction in China’s film market based on a stacking fusion model," Annals of Operations Research, Springer, vol. 308(1), pages 321-338, January.
    14. David Court & Benjamin Gillen & Jordi McKenzie & Charles R. Plott, 2018. "Two information aggregation mechanisms for predicting the opening weekend box office revenues of films: Boxoffice Prophecy and Guess of Guesses," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(1), pages 25-54, January.
    15. Young Bin Kim & Jurim Lee & Nuri Park & Jaegul Choo & Jong-Hyun Kim & Chang Hun Kim, 2017. "When Bitcoin encounters information in an online forum: Using text mining to analyse user opinions and predict value fluctuation," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    16. Jason M. T. Roos & Ron Shachar, 2014. "When Kerry Met Sally: Politics and Perceptions in the Demand for Movies," Management Science, INFORMS, vol. 60(7), pages 1617-1631, July.
    17. Trilce Navarrete & Karol J. Borowiecki, 2015. "Change in access after digitization: Ethnographic collections in Wikipedia," ACEI Working Paper Series AWP-10-2015, Association for Cultural Economics International, revised Oct 2015.
    18. An, Yongdae & An, Jinwon & Cho, Sungzoon, 2021. "Artificial intelligence-based predictions of movie audiences on opening Saturday," International Journal of Forecasting, Elsevier, vol. 37(1), pages 274-288.
    19. Andrea Fronzetti Colladon & Maurizio Naldi, 2019. "Predicting the performance of TV series through textual and network analysis: The case of Big Bang Theory," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-20, November.
    20. Tanzeela AQIF & Abdul WAHAB, 2022. "Reshaping The Future Of Retail Marketing Through Big Data: A Review From 2009 To 2022," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 14(3), pages 5-24, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0109293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.