IDEAS home Printed from https://ideas.repec.org/a/kap/mktlet/v34y2023i3d10.1007_s11002-023-09665-8.html
   My bibliography  Save this article

What reviews foretell about opening weekend box office revenue: the harbinger of failure effect in the movie industry

Author

Listed:
  • Pantelis Loupos

    (University of California Davis)

  • Yvette Peng

    (University of California Davis)

  • Sute Li

    (University of California Davis)

  • Hao Hao

    (University of California Davis)

Abstract

We empirically investigate the harbinger of failure phenomenon in the motion picture industry by analyzing the pre-release reviews written on movies by film critics. We find that harbingers of failure do exist. Their positive (negative) pre-release movie reviews provide a strong predictive signal that the movie will turn out to be a flop (success). This signal persists even for the top critic category, which usually consists of professional critics, indicating that having expertise in a professional domain does not necessarily lead to correct predictions. Our findings challenge the current belief that positive reviews always help enhance box office revenue and shed new light on the influencer-predictor hypothesis. We further analyze the writing style of harbingers and provide new insights into their personality traits and cognitive biases.

Suggested Citation

  • Pantelis Loupos & Yvette Peng & Sute Li & Hao Hao, 2023. "What reviews foretell about opening weekend box office revenue: the harbinger of failure effect in the movie industry," Marketing Letters, Springer, vol. 34(3), pages 513-534, September.
  • Handle: RePEc:kap:mktlet:v:34:y:2023:i:3:d:10.1007_s11002-023-09665-8
    DOI: 10.1007/s11002-023-09665-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11002-023-09665-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11002-023-09665-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karniouchina, Ekaterina V., 2011. "Impact of star and movie buzz on motion picture distribution and box office revenue," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 62-74.
    2. Jehoshua Eliashberg & Sam K. Hui & Z. John Zhang, 2007. "From Story Line to Box Office: A New Approach for Green-Lighting Movie Scripts," Management Science, INFORMS, vol. 53(6), pages 881-893, June.
    3. Waldfogel, Joel, 2003. "Preference Externalities: An Empirical Study of Who Benefits Whom in Differentiated-Product Markets," RAND Journal of Economics, The RAND Corporation, vol. 34(3), pages 557-568, Autumn.
    4. Angela Liu & Yong Liu & Tridib Mazumdar, 2014. "Star power in the eye of the beholder: A study of the influence of stars in the movie industry," Marketing Letters, Springer, vol. 25(4), pages 385-396, December.
    5. Peter Boatwright & Suman Basuroy & Wagner Kamakura, 2007. "Reviewing the reviewers: The impact of individual film critics on box office performance," Quantitative Marketing and Economics (QME), Springer, vol. 5(4), pages 401-425, December.
    6. Luís Cabral & Gabriel Natividad, 2016. "Box-Office Demand: The Importance of Being #1," Journal of Industrial Economics, Wiley Blackwell, vol. 64(2), pages 277-294, June.
    7. Márton Mestyán & Taha Yasseri & János Kertész, 2013. "Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    8. Tingting Song & Jinghua Huang & Yong Tan & Yifan Yu, 2019. "Using User- and Marketer-Generated Content for Box Office Revenue Prediction: Differences Between Microblogging and Third-Party Platforms," Service Science, INFORMS, vol. 30(1), pages 191-203, March.
    9. Andrew Ainslie & Xavier Drèze & Fred Zufryden, 2005. "Modeling Movie Life Cycles and Market Share," Marketing Science, INFORMS, vol. 24(3), pages 508-517, November.
    10. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronny Behrens & Natasha Zhang Foutz & Michael Franklin & Jannis Funk & Fernanda Gutierrez-Navratil & Julian Hofmann & Ulrike Leibfried, 2021. "Leveraging analytics to produce compelling and profitable film content," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 45(2), pages 171-211, June.
    2. Jason M. T. Roos & Ron Shachar, 2014. "When Kerry Met Sally: Politics and Perceptions in the Demand for Movies," Management Science, INFORMS, vol. 60(7), pages 1617-1631, July.
    3. Clement, Michel & Wu, Steven & Fischer, Marc, 2014. "Empirical generalizations of demand and supply dynamics for movies," International Journal of Research in Marketing, Elsevier, vol. 31(2), pages 207-223.
    4. Bae, Giwoong & Kim, Hye-jin, 2019. "The impact of movie titles on box office success," Journal of Business Research, Elsevier, vol. 103(C), pages 100-109.
    5. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    6. Lili Kang & Fei Peng, 2024. "Star power as quality signal or marketing effect? A path analysis on China's motion‐picture industry," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3639-3655, July.
    7. Jordi McKenzie, 2023. "The economics of movies (revisited): A survey of recent literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 480-525, April.
    8. Yanhao Max Wei, 2020. "The Similarity Network of Motion Pictures," Management Science, INFORMS, vol. 66(4), pages 1647-1671, April.
    9. Hofmann, Julian & Clement, Michel & Völckner, Franziska & Hennig-Thurau, Thorsten, 2017. "Empirical generalizations on the impact of stars on the economic success of movies," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 442-461.
    10. Fei Peng & Lili Kang & Sajid Anwar & Xue Li, 2019. "Star power and box office revenues: evidence from China," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 43(2), pages 247-278, June.
    11. Chou, Yuntsai & Lin, Wei, 2024. "Blockbuster or Flop? Effects of Social Media on the Chinese Film Market," 24th ITS Biennial Conference, Seoul 2024. New bottles for new wine: digital transformation demands new policies and strategies 302460, International Telecommunications Society (ITS).
    12. Wei, Liyuan & Yang, Yupin, 2022. "An empirical investigation of director selection in movie preproduction: A two-sided matching approach," International Journal of Research in Marketing, Elsevier, vol. 39(3), pages 888-906.
    13. Delre, Sebastiano A. & Luffarelli, Jonathan, 2023. "Consumer reviews and product life cycle: On the temporal dynamics of electronic word of mouth on movie box office," Journal of Business Research, Elsevier, vol. 156(C).
    14. Rubin, Dan & Mohr, Iris & Kumar, V., 2022. "Beyond the box office: A conceptual framework for the drivers of audience engagement," Journal of Business Research, Elsevier, vol. 151(C), pages 473-488.
    15. Kang, Lili & Peng, Fei & Anwar, Sajid, 2022. "All that glitters is not gold: Do movie quality and contents influence box-office revenues in China?," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 492-510.
    16. Kim, Taegu & Hong, Jungsik & Kang, Pilsung, 2015. "Box office forecasting using machine learning algorithms based on SNS data," International Journal of Forecasting, Elsevier, vol. 31(2), pages 364-390.
    17. Fan, Liu & Zhang, Xiaoping & Rai, Laxmisha, 2021. "When should star power and eWOM be responsible for the box office performance? - An empirical study based on signaling theory," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    18. Jun Pang & Angela Xia Liu & Peter N. Golder, 2022. "Critics’ conformity to consumers in movie evaluation," Journal of the Academy of Marketing Science, Springer, vol. 50(4), pages 864-887, July.
    19. Moon, Sangkil & Jalali, Nima & Song, Reo, 2022. "Green-lighting scripts in the movie pre-production stage: An application of consumption experience carryover theory," Journal of Business Research, Elsevier, vol. 140(C), pages 332-345.
    20. Shijie Lu & Xin (Shane) Wang & Neil Bendle, 2020. "Does Piracy Create Online Word of Mouth? An Empirical Analysis in the Movie Industry," Management Science, INFORMS, vol. 66(5), pages 2140-2162, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:mktlet:v:34:y:2023:i:3:d:10.1007_s11002-023-09665-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.