IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i9p10974-10983d55283.html
   My bibliography  Save this article

Public Trauma after the Sewol Ferry Disaster: The Role of Social Media in Understanding the Public Mood

Author

Listed:
  • Hyekyung Woo

    (School of Public Health, Seoul National University, Seoul 151-742, Korea
    Institute of Health and Environment, Seoul National University, Seoul 151-742, Korea)

  • Youngtae Cho

    (School of Public Health, Seoul National University, Seoul 151-742, Korea
    Institute of Health and Environment, Seoul National University, Seoul 151-742, Korea)

  • Eunyoung Shim

    (School of Public Health, Seoul National University, Seoul 151-742, Korea
    Institute of Health and Environment, Seoul National University, Seoul 151-742, Korea)

  • Kihwang Lee

    (Mining Laboratory, Daumsoft, Seoul 140-887, Korea)

  • Gilyoung Song

    (Mining Laboratory, Daumsoft, Seoul 140-887, Korea)

Abstract

The Sewol ferry disaster severely shocked Korean society. The objective of this study was to explore how the public mood in Korea changed following the Sewol disaster using Twitter data. Data were collected from daily Twitter posts from 1 January 2011 to 31 December 2013 and from 1 March 2014 to 30 June 2014 using natural language-processing and text-mining technologies. We investigated the emotional utterances in reaction to the disaster by analyzing the appearance of keywords, the human-made disaster-related keywords and suicide-related keywords. This disaster elicited immediate emotional reactions from the public, including anger directed at various social and political events occurring in the aftermath of the disaster. We also found that although the frequency of Twitter keywords fluctuated greatly during the month after the Sewol disaster, keywords associated with suicide were common in the general population. Policy makers should recognize that both those directly affected and the general public still suffers from the effects of this traumatic event and its aftermath. The mood changes experienced by the general population should be monitored after a disaster, and social media data can be useful for this purpose.

Suggested Citation

  • Hyekyung Woo & Youngtae Cho & Eunyoung Shim & Kihwang Lee & Gilyoung Song, 2015. "Public Trauma after the Sewol Ferry Disaster: The Role of Social Media in Understanding the Public Mood," IJERPH, MDPI, vol. 12(9), pages 1-10, September.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:9:p:10974-10983:d:55283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/9/10974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/9/10974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong-Hee Won & Woojae Myung & Gil-Young Song & Won-Hee Lee & Jong-Won Kim & Bernard J Carroll & Doh Kwan Kim, 2013. "Predicting National Suicide Numbers with Social Media Data," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-6, April.
    2. Márton Mestyán & Taha Yasseri & János Kertész, 2013. "Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    3. David A Broniatowski & Michael J Paul & Mark Dredze, 2013. "National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joana M. Barros & Ruth Melia & Kady Francis & John Bogue & Mary O’Sullivan & Karen Young & Rebecca A. Bernert & Dietrich Rebholz-Schuhmann & Jim Duggan, 2019. "The Validity of Google Trends Search Volumes for Behavioral Forecasting of National Suicide Rates in Ireland," IJERPH, MDPI, vol. 16(17), pages 1-18, September.
    2. Marco Palomino & Tim Taylor & Ayse Göker & John Isaacs & Sara Warber, 2016. "The Online Dissemination of Nature–Health Concepts: Lessons from Sentiment Analysis of Social Media Relating to “Nature-Deficit Disorder”," IJERPH, MDPI, vol. 13(1), pages 1-23, January.
    3. Rebecca A. Bernert & Amanda M. Hilberg & Ruth Melia & Jane Paik Kim & Nigam H. Shah & Freddy Abnousi, 2020. "Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations," IJERPH, MDPI, vol. 17(16), pages 1-25, August.
    4. Xiaodong Cao & Piers MacNaughton & Zhengyi Deng & Jie Yin & Xi Zhang & Joseph G. Allen, 2018. "Using Twitter to Better Understand the Spatiotemporal Patterns of Public Sentiment: A Case Study in Massachusetts, USA," IJERPH, MDPI, vol. 15(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yukie Sano & Hideki Takayasu & Shlomo Havlin & Misako Takayasu, 2019. "Identifying long-term periodic cycles and memories of collective emotion in online social media," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-17, March.
    2. HeeChel Kim & Hong-Woo Chun & Seonho Kim & Byoung-Youl Coh & Oh-Jin Kwon & Yeong-Ho Moon, 2017. "Longitudinal Study-Based Dementia Prediction for Public Health," IJERPH, MDPI, vol. 14(9), pages 1-16, August.
    3. Letchford, Adrian & Preis, Tobias & Moat, Helen Susannah, 2016. "The advantage of simple paper abstracts," Journal of Informetrics, Elsevier, vol. 10(1), pages 1-8.
    4. Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019. "Noise traders and smart money: Evidence from online searches," Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
    5. Daniele Barchiesi & Helen Susannah Moat & Christian Alis & Steven Bishop & Tobias Preis, 2015. "Quantifying International Travel Flows Using Flickr," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-8, July.
    6. Paolo BRUNORI & Giuliano RESCE, 2020. "Searching for the peak Google Trends and the Covid-19 outbreak in Italy," Working Papers - Economics wp2020_05.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    7. Fernando Arias & Ariel Guerra-Adames & Maytee Zambrano & Efraín Quintero-Guerra & Nathalia Tejedor-Flores, 2022. "Analyzing Spanish-Language Public Sentiment in the Context of a Pandemic and Social Unrest: The Panama Case," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    8. Andreas Spitz & Emőke-Ágnes Horvát, 2014. "Measuring Long-Term Impact Based on Network Centrality: Unraveling Cinematic Citations," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    9. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    10. Ira Puspitasari & Alia Firdauzy, 2019. "Characterizing Consumer Behavior in Leveraging Social Media for E-Patient and Health-Related Activities," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    11. Jeon, Hongjun & Seo, Wonchul & Park, Eunjeong & Choi, Sungchul, 2020. "Hybrid machine learning approach for popularity prediction of newly released contents of online video streaming services," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    12. David A. Broniatowski, 2018. "Building the tower without climbing it: Progress in engineering systems," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 259-281, May.
    13. Shota Saito & Yoshito Hirata & Kazutoshi Sasahara & Hideyuki Suzuki, 2015. "Tracking Time Evolution of Collective Attention Clusters in Twitter: Time Evolving Nonnegative Matrix Factorisation," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-17, September.
    14. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    15. Samuel V Scarpino & James G Scott & Rosalind M Eggo & Bruce Clements & Nedialko B Dimitrov & Lauren Ancel Meyers, 2020. "Socioeconomic bias in influenza surveillance," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-19, July.
    16. Hongying Dai & Brian R. Lee & Jianqiang Hao, 2017. "Predicting Asthma Prevalence by Linking Social Media Data and Traditional Surveys," The ANNALS of the American Academy of Political and Social Science, , vol. 669(1), pages 75-92, January.
    17. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    18. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    19. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    20. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:9:p:10974-10983:d:55283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.