IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0102466.html
   My bibliography  Save this article

Differential Transcriptional Effects of EGFR Inhibitors

Author

Listed:
  • Miroslav Blumenberg

Abstract

EGF and its receptor EGFR serve as a paradigm for signaling in cell, molecular and tumor biology. EGFR inhibitors, drugs targeting the intracellular kinase activity and antibodies targeting the extracellular ligand binding, are used to treat breast, lung, colon and other cancers. Nominally affecting the same target, inhibitors have different effects, suggesting that use of inhibitor combinations may provide beneficial in cancer treatment. To explore the specific and the common transcriptional effects of EGFR inhibitors, we present metaanalysis of 20 individual studies comprising 346 microarrays. We identified specific gene subsets regulated by kinase inhibitors, those regulated using antibodies and by suppressing EGFR expression using miR-7. Unreported before, the inhibitors prominently induce lysosome components. All inhibitors rely on related sets of transcription factors and protein kinases, both for transcriptional induction and suppression. However, we find that Gefitinib suppresses apoptosis inhibitors, while inducing cell-cycle inhibitors; conversely, Erlotinib suppresses cell-cycle and cell migration genes, while inducing proapoptotic genes. EGFR-targeting antibodies specifically suppress cell motility, developmental and differentiation processes, while inducing the contractile apparatus. miR-7, distinctively, suppresses cell-cycle genes, while inducing transcription machinery. These metaanalysis results suggest that different inhibitors have overlapping but quite distinct effects in target cells. Judicial use of EGFR-targeting combinations, i.e., simultaneous use of antibodies and multiple kinase inhibitors, may provide more effective cancer treatments with fewer side-effects and avoid development of resistance. We expect, moreover, that specific drug combination treatments can be fine-tuned to achieve specific, personalized results.

Suggested Citation

  • Miroslav Blumenberg, 2014. "Differential Transcriptional Effects of EGFR Inhibitors," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-14, September.
  • Handle: RePEc:plo:pone00:0102466
    DOI: 10.1371/journal.pone.0102466
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102466
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0102466&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0102466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yong Zheng & Cunjie Zhang & David R. Croucher & Mohamed A. Soliman & Nicole St-Denis & Adrian Pasculescu & Lorne Taylor & Stephen A. Tate & W. Rod Hardy & Karen Colwill & Anna Yue Dai & Rick Bagshaw &, 2013. "Temporal regulation of EGF signalling networks by the scaffold protein Shc1," Nature, Nature, vol. 499(7457), pages 166-171, July.
    2. Inhee Chung & Robert Akita & Richard Vandlen & Derek Toomre & Joseph Schlessinger & Ira Mellman, 2010. "Spatial control of EGF receptor activation by reversible dimerization on living cells," Nature, Nature, vol. 464(7289), pages 783-787, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shwetha Srinivasan & Raju Regmi & Xingcheng Lin & Courtney A. Dreyer & Xuyan Chen & Steven D. Quinn & Wei He & Matthew A. Coleman & Kermit L. Carraway & Bin Zhang & Gabriela S. Schlau-Cohen, 2022. "Ligand-induced transmembrane conformational coupling in monomeric EGFR," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Michael G. Sugiyama & Aidan I. Brown & Jesus Vega-Lugo & Jazlyn P. Borges & Andrew M. Scott & Khuloud Jaqaman & Gregory D. Fairn & Costin N. Antonescu, 2023. "Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Ziya Kalay & Takahiro K Fujiwara & Akihiro Kusumi, 2012. "Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    5. Zhdanov, Vladimir P., 2015. "Control of tissue growth by locally produced activator: Liver regeneration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 279-285.
    6. Michael J. Roy & Minglyanna G. Surudoi & Ashleigh Kropp & Jianmei Hou & Weiwen Dai & Joshua M. Hardy & Lung-Yu Liang & Thomas R. Cotton & Bernhard C. Lechtenberg & Toby A. Dite & Xiuquan Ma & Roger J., 2023. "Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Hui Deng & Qian Lei & Chengdi Wang & Zhoufeng Wang & Hai Chen & Gang Wang & Na Yang & Dan Huang & Quanwei Yu & Mengling Yao & Xue Xiao & Guonian Zhu & Cheng Cheng & Yangqian Li & Feng Li & Panwen Tian, 2022. "A fluorogenic probe for predicting treatment response in non-small cell lung cancer with EGFR-activating mutations," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Ana Martinez-Val & Dorte B. Bekker-Jensen & Sophia Steigerwald & Claire Koenig & Ole Østergaard & Adi Mehta & Trung Tran & Krzysztof Sikorski & Estefanía Torres-Vega & Ewa Kwasniewicz & Sólveig Hlín B, 2021. "Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    9. Manas Pratim Chakraborty & Diptatanu Das & Purav Mondal & Pragya Kaul & Soumi Bhattacharyya & Prosad Kumar Das & Rahul Das, 2024. "Molecular basis of VEGFR1 autoinhibition at the plasma membrane," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Hayarpi Torosyan & Michael D. Paul & Antoine Forget & Megan Lo & Devan Diwanji & Krzysztof Pawłowski & Nevan J. Krogan & Natalia Jura & Kliment A. Verba, 2023. "Structural insights into regulation of the PEAK3 pseudokinase scaffold by 14-3-3," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0102466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.