IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v421y2015icp279-285.html
   My bibliography  Save this article

Control of tissue growth by locally produced activator: Liver regeneration

Author

Listed:
  • Zhdanov, Vladimir P.

Abstract

In general, the tissue development is controlled by growth factors and depends on the biomechanics of cells. The corresponding kinetic models are focused primarily on the early stages of the development. The attempts to construct such models for the later stages are still rare. One of the notable examples here is liver regeneration. Referring to this process, the author proposes and analyzes a generic kinetic model describing the regulation of tissue growth by locally produced activator. The model includes activator diffusion and control of the rate of cell proliferation which is described by using the Hill expression. Although this control may be moderately or strongly non-linear, the qualitative changes in the regeneration kinetics are predicted to be modest. For moderately non-linear control, the evolution of the tissue volume to the steady-state value exhibits an initial relatively short linear stage and then becomes slightly slower so that the whole kinetics is close to exponential. For strongly non-linear control, the linear stage dominates and/or the kinetics may exhibit a S-like shape feature which is, however, rather weak. The identification of such qualitative features in experimentally measured kinetics is shown to be difficult, because the error bars in the experiments are typically too large.

Suggested Citation

  • Zhdanov, Vladimir P., 2015. "Control of tissue growth by locally produced activator: Liver regeneration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 279-285.
  • Handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:279-285
    DOI: 10.1016/j.physa.2014.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114009996
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inhee Chung & Robert Akita & Richard Vandlen & Derek Toomre & Joseph Schlessinger & Ira Mellman, 2010. "Spatial control of EGF receptor activation by reversible dimerization on living cells," Nature, Nature, vol. 464(7289), pages 783-787, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shwetha Srinivasan & Raju Regmi & Xingcheng Lin & Courtney A. Dreyer & Xuyan Chen & Steven D. Quinn & Wei He & Matthew A. Coleman & Kermit L. Carraway & Bin Zhang & Gabriela S. Schlau-Cohen, 2022. "Ligand-induced transmembrane conformational coupling in monomeric EGFR," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Michael G. Sugiyama & Aidan I. Brown & Jesus Vega-Lugo & Jazlyn P. Borges & Andrew M. Scott & Khuloud Jaqaman & Gregory D. Fairn & Costin N. Antonescu, 2023. "Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Hui Deng & Qian Lei & Chengdi Wang & Zhoufeng Wang & Hai Chen & Gang Wang & Na Yang & Dan Huang & Quanwei Yu & Mengling Yao & Xue Xiao & Guonian Zhu & Cheng Cheng & Yangqian Li & Feng Li & Panwen Tian, 2022. "A fluorogenic probe for predicting treatment response in non-small cell lung cancer with EGFR-activating mutations," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Manas Pratim Chakraborty & Diptatanu Das & Purav Mondal & Pragya Kaul & Soumi Bhattacharyya & Prosad Kumar Das & Rahul Das, 2024. "Molecular basis of VEGFR1 autoinhibition at the plasma membrane," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Ziya Kalay & Takahiro K Fujiwara & Akihiro Kusumi, 2012. "Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    6. Miroslav Blumenberg, 2014. "Differential Transcriptional Effects of EGFR Inhibitors," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:279-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.