IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38864-0.html
   My bibliography  Save this article

Structural insights into regulation of the PEAK3 pseudokinase scaffold by 14-3-3

Author

Listed:
  • Hayarpi Torosyan

    (University of California San Francisco
    University of California San Francisco)

  • Michael D. Paul

    (University of California San Francisco)

  • Antoine Forget

    (University of California San Francisco
    University of California San Francisco)

  • Megan Lo

    (University of California San Francisco)

  • Devan Diwanji

    (University of California San Francisco
    University of California San Francisco)

  • Krzysztof Pawłowski

    (University of Texas Southwestern Medical Center
    Warsaw University of Life Sciences)

  • Nevan J. Krogan

    (University of California San Francisco
    University of California San Francisco
    J. David Gladstone Institutes)

  • Natalia Jura

    (University of California San Francisco
    University of California San Francisco
    University of California San Francisco)

  • Kliment A. Verba

    (University of California San Francisco
    University of California San Francisco)

Abstract

PEAK pseudokinases are molecular scaffolds which dimerize to regulate cell migration, morphology, and proliferation, as well as cancer progression. The mechanistic role dimerization plays in PEAK scaffolding remains unclear, as there are no structures of PEAKs in complex with their interactors. Here, we report the cryo-EM structure of dimeric PEAK3 in complex with an endogenous 14-3-3 heterodimer. Our structure reveals an asymmetric binding mode between PEAK3 and 14-3-3 stabilized by one pseudokinase domain and the SHED domain of the PEAK3 dimer. The binding interface contains a canonical phosphosite-dependent primary interaction and a unique secondary interaction not observed in previous structures of 14-3-3/client complexes. Additionally, we show that PKD regulates PEAK3/14-3-3 binding, which when prevented leads to PEAK3 nuclear enrichment and distinct protein-protein interactions. Altogether, our data demonstrate that PEAK3 dimerization forms an unusual secondary interface for 14-3-3 binding, facilitating 14-3-3 regulation of PEAK3 localization and interactome diversity.

Suggested Citation

  • Hayarpi Torosyan & Michael D. Paul & Antoine Forget & Megan Lo & Devan Diwanji & Krzysztof Pawłowski & Nevan J. Krogan & Natalia Jura & Kliment A. Verba, 2023. "Structural insights into regulation of the PEAK3 pseudokinase scaffold by 14-3-3," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38864-0
    DOI: 10.1038/s41467-023-38864-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38864-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38864-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tobias Karlberg & Peter Hornyak & Ana Filipa Pinto & Stefina Milanova & Mahsa Ebrahimi & Mikael Lindberg & Nikolai Püllen & Axel Nordström & Elinor Löverli & Rémi Caraballo & Emily V. Wong & Katja När, 2018. "14-3-3 proteins activate Pseudomonas exotoxins-S and -T by chaperoning a hydrophobic surface," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Yong Zheng & Cunjie Zhang & David R. Croucher & Mohamed A. Soliman & Nicole St-Denis & Adrian Pasculescu & Lorne Taylor & Stephen A. Tate & W. Rod Hardy & Karen Colwill & Anna Yue Dai & Rick Bagshaw &, 2013. "Temporal regulation of EGF signalling networks by the scaffold protein Shc1," Nature, Nature, vol. 499(7457), pages 166-171, July.
    3. Onisha Patel & Michael D. W. Griffin & Santosh Panjikar & Weiwen Dai & Xiuquan Ma & Howard Chan & Celine Zheng & Ashleigh Kropp & James M. Murphy & Roger J. Daly & Isabelle S. Lucet, 2017. "Structure of SgK223 pseudokinase reveals novel mechanisms of homotypic and heterotypic association," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael J. Roy & Minglyanna G. Surudoi & Ashleigh Kropp & Jianmei Hou & Weiwen Dai & Joshua M. Hardy & Lung-Yu Liang & Thomas R. Cotton & Bernhard C. Lechtenberg & Toby A. Dite & Xiuquan Ma & Roger J., 2023. "Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Ana Martinez-Val & Dorte B. Bekker-Jensen & Sophia Steigerwald & Claire Koenig & Ole Østergaard & Adi Mehta & Trung Tran & Krzysztof Sikorski & Estefanía Torres-Vega & Ewa Kwasniewicz & Sólveig Hlín B, 2021. "Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Miroslav Blumenberg, 2014. "Differential Transcriptional Effects of EGFR Inhibitors," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38864-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.