IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53772-7.html
   My bibliography  Save this article

Single-molecule imaging and molecular dynamics simulations reveal early activation of the MET receptor in cells

Author

Listed:
  • Yunqing Li

    (Max-von-Laue-Str. 7)

  • Serena M. Arghittu

    (Ruth-Moufang-Str. 1
    Max-von-Laue-Str. 3)

  • Marina S. Dietz

    (Max-von-Laue-Str. 7)

  • Gabriel J. Hella

    (Ruth-Moufang-Str. 1)

  • Daniel Haße

    (Universitaetsstr. 25)

  • Davide M. Ferraris

    (Largo Donegani 2)

  • Petra Freund

    (Max-von-Laue-Str. 7)

  • Hans-Dieter Barth

    (Max-von-Laue-Str. 7)

  • Luisa Iamele

    (Via Ferrata 9)

  • Hugo Jonge

    (Via Ferrata 9)

  • Hartmut H. Niemann

    (Universitaetsstr. 25)

  • Roberto Covino

    (Ruth-Moufang-Str. 1
    Max-von-Laue-Str. 3
    Robert-Mayer-Str. 11-15)

  • Mike Heilemann

    (Max-von-Laue-Str. 7
    Max-von-Laue-Str. 3)

Abstract

Embedding of cell-surface receptors into a membrane defines their dynamics but also complicates experimental characterization of their signaling complexes. The hepatocyte growth factor receptor MET is a receptor tyrosine kinase involved in cellular processes such as proliferation, migration, and survival. It is also targeted by the pathogen Listeria monocytogenes, whose invasion protein, internalin B (InlB), binds to MET, forming a signaling dimer that triggers pathogen internalization. Here we use an integrative structural biology approach, combining molecular dynamics simulations and single-molecule Förster resonance energy transfer (smFRET) in cells, to investigate the early stages of MET activation. Our simulations show that InlB binding stabilizes MET in a conformation that promotes dimer formation. smFRET reveals that the in situ dimer structure closely resembles one of two previously published crystal structures, though with key differences. This study refines our understanding of MET activation and provides a methodological framework for studying other plasma membrane receptors.

Suggested Citation

  • Yunqing Li & Serena M. Arghittu & Marina S. Dietz & Gabriel J. Hella & Daniel Haße & Davide M. Ferraris & Petra Freund & Hans-Dieter Barth & Luisa Iamele & Hugo Jonge & Hartmut H. Niemann & Roberto Co, 2024. "Single-molecule imaging and molecular dynamics simulations reveal early activation of the MET receptor in cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53772-7
    DOI: 10.1038/s41467-024-53772-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53772-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53772-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Inhee Chung & Robert Akita & Richard Vandlen & Derek Toomre & Joseph Schlessinger & Ira Mellman, 2010. "Spatial control of EGF receptor activation by reversible dimerization on living cells," Nature, Nature, vol. 464(7289), pages 783-787, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shwetha Srinivasan & Raju Regmi & Xingcheng Lin & Courtney A. Dreyer & Xuyan Chen & Steven D. Quinn & Wei He & Matthew A. Coleman & Kermit L. Carraway & Bin Zhang & Gabriela S. Schlau-Cohen, 2022. "Ligand-induced transmembrane conformational coupling in monomeric EGFR," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Michael G. Sugiyama & Aidan I. Brown & Jesus Vega-Lugo & Jazlyn P. Borges & Andrew M. Scott & Khuloud Jaqaman & Gregory D. Fairn & Costin N. Antonescu, 2023. "Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Ziya Kalay & Takahiro K Fujiwara & Akihiro Kusumi, 2012. "Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    4. Zhdanov, Vladimir P., 2015. "Control of tissue growth by locally produced activator: Liver regeneration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 279-285.
    5. Hui Deng & Qian Lei & Chengdi Wang & Zhoufeng Wang & Hai Chen & Gang Wang & Na Yang & Dan Huang & Quanwei Yu & Mengling Yao & Xue Xiao & Guonian Zhu & Cheng Cheng & Yangqian Li & Feng Li & Panwen Tian, 2022. "A fluorogenic probe for predicting treatment response in non-small cell lung cancer with EGFR-activating mutations," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Manas Pratim Chakraborty & Diptatanu Das & Purav Mondal & Pragya Kaul & Soumi Bhattacharyya & Prosad Kumar Das & Rahul Das, 2024. "Molecular basis of VEGFR1 autoinhibition at the plasma membrane," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Miroslav Blumenberg, 2014. "Differential Transcriptional Effects of EGFR Inhibitors," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53772-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.