IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0100338.html
   My bibliography  Save this article

Hubs and Authorities in the World Trade Network Using a Weighted HITS Algorithm

Author

Listed:
  • Tsuyoshi Deguchi
  • Katsuhide Takahashi
  • Hideki Takayasu
  • Misako Takayasu

Abstract

We investigate the economic hubs and authorities of the world trade network (WTN) from to , an era of rapid economic globalization. Using a well-defined weighted hyperlink-induced topic search (HITS) algorithm, we can calculate the values of the weighted HITS hub and authority for each country in a conjugate way. In the context of the WTN, authority values are large for countries with significant imports from large hub countries, and hub values are large for countries with significant exports to high-authority countries. The United States was the largest economic authority in the WTN from to . The authority value of the United States has declined since , and China has now become the largest hub in the WTN. At the same time, China's authority value has grown as China is transforming itself from the “factory of the world” to the “market of the world.” European countries show a tendency to trade mostly within the European Union, which has decreased Europe's hub and authority values. Japan's authority value has increased slowly, while its hub value has declined. These changes are consistent with Japan's transition from being an export-driven economy in its high economic growth era in the latter half of the twentieth century to being a more mature, economically balanced nation.

Suggested Citation

  • Tsuyoshi Deguchi & Katsuhide Takahashi & Hideki Takayasu & Misako Takayasu, 2014. "Hubs and Authorities in the World Trade Network Using a Weighted HITS Algorithm," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0100338
    DOI: 10.1371/journal.pone.0100338
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100338
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0100338&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0100338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luca De Benedictis & Lucia Tajoli, 2011. "The World Trade Network," The World Economy, Wiley Blackwell, vol. 34(8), pages 1417-1454, August.
    2. Li, Xiang & Ying Jin, Yu & Chen, Guanrong, 2003. "Complexity and synchronization of the World trade Web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 287-296.
    3. Caldarelli, Guido, 2007. "Scale-Free Networks: Complex Webs in Nature and Technology," OUP Catalogue, Oxford University Press, number 9780199211517.
    4. D. Garlaschelli & M. I. Loffredo, 2004. "Fitness-dependent topological properties of the World Trade Web," Papers cond-mat/0403051, arXiv.org, revised Oct 2004.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2013. "Null models of economic networks: the case of the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 75-107, April.
    2. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    3. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    4. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2020. "Community structure in the World Trade Network based on communicability distances," Papers 2001.06356, arXiv.org, revised Jul 2020.
    5. Marcos Duenas & Rossana Mastrandrea & Matteo Barigozzi & Giorgio Fagiolo, 2017. "Spatio-Temporal Patterns of the International Merger and Acquisition Network," LEM Papers Series 2017/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Marco Dueñas & Giorgio Fagiolo, 2014. "Global Trade Imbalances: A Network Approach," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(03n04), pages 1-29.
    7. Liu, Linqing & Shen, Mengyun & Sun, Da & Yan, Xiaofei & Hu, Shi, 2022. "Preferential attachment, R&D expenditure and the evolution of international trade networks from the perspective of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2022. "Community structure in the World Trade Network based on communicability distances," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 405-441, April.
    9. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    10. Zsuzsanna Bacsi & Mária Fekete-Farkas & Muhammad Imam Ma’ruf, 2023. "A Graph-Based Network Analysis of Global Coffee Trade—The Impact of COVID-19 on Trade Relations in 2020," Sustainability, MDPI, vol. 15(4), pages 1-32, February.
    11. Barberis, Eduardo & Freddi, Daniela & Giammetti, Raffaele & Polidori, Paolo & Teobaldelli, Désirée & Viganò, Elena, 2020. "Trade Relationships in the European Pork Value Chain: A Network Analysis," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 22(1), May.
    12. João Amador & Sónia Cabral, 2017. "Networks of Value-added Trade," The World Economy, Wiley Blackwell, vol. 40(7), pages 1291-1313, July.
    13. Stefano Schiavo & Javier Reyes & Giorgio Fagiolo, 2010. "International trade and financial integration: a weighted network analysis," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 389-399.
    14. Anna Maria D’Arcangelis & Giulia Rotundo, 2016. "Complex Networks in Finance," Lecture Notes in Economics and Mathematical Systems, in: Pasquale Commendatore & Mariano Matilla-García & Luis M. Varela & Jose S. Cánovas (ed.), Complex Networks and Dynamics, pages 209-235, Springer.
    15. A. Baronchelli & T.E. Uberti, 2018. "Exports and FDI: comparing networks in the new millennium," Working Paper CRENoS 201813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    16. Fagiolo, Giorgio & Reyes, Javier & Schiavo, Stefano, 2008. "On the topological properties of the world trade web: A weighted network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3868-3873.
    17. Roberto Antonietti & Giulia De Masi & Giorgio Ricchiuti, 2020. "Linking FDI Network Topology with the Covid-19 Pandemic," Papers in Evolutionary Economic Geography (PEEG) 2054, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Nov 2020.
    18. Charlie Joyez, 2017. "Network Structure of French Multinational Firms," Working Papers DT/2017/08, DIAL (Développement, Institutions et Mondialisation).
    19. Giorgio Fagiolo & Javier Reyes & Stefano Schiavo, 2007. "The Evolution of the World Trade Web," LEM Papers Series 2007/17, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0100338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.