IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0098272.html
   My bibliography  Save this article

Development, Calibration and Performance of an HIV Transmission Model Incorporating Natural History and Behavioral Patterns: Application in South Africa

Author

Listed:
  • Alethea W McCormick
  • Nadia N Abuelezam
  • Erin R Rhode
  • Taige Hou
  • Rochelle P Walensky
  • Pamela P Pei
  • Jessica E Becker
  • Madeline A DiLorenzo
  • Elena Losina
  • Kenneth A Freedberg
  • Marc Lipsitch
  • George R Seage III

Abstract

Understanding HIV transmission dynamics is critical to estimating the potential population-wide impact of HIV prevention and treatment interventions. We developed an individual-based simulation model of the heterosexual HIV epidemic in South Africa and linked it to the previously published Cost-Effectiveness of Preventing AIDS Complications (CEPAC) International Model, which simulates the natural history and treatment of HIV. In this new model, the CEPAC Dynamic Model (CDM), the probability of HIV transmission per sexual encounter between short-term, long-term and commercial sex worker partners depends upon the HIV RNA and disease stage of the infected partner, condom use, and the circumcision status of the uninfected male partner. We included behavioral, demographic and biological values in the CDM and calibrated to HIV prevalence in South Africa pre-antiretroviral therapy. Using a multi-step fitting procedure based on Bayesian melding methodology, we performed 264,225 simulations of the HIV epidemic in South Africa and identified 3,750 parameter sets that created an epidemic and had behavioral characteristics representative of a South African population pre-ART. Of these parameter sets, 564 contributed 90% of the likelihood weight to the fit, and closely reproduced the UNAIDS HIV prevalence curve in South Africa from 1990–2002. The calibration was sensitive to changes in the rate of formation of short-duration partnerships and to the partnership acquisition rate among high-risk individuals, both of which impacted concurrency. Runs that closely fit to historical HIV prevalence reflect diverse ranges for individual parameter values and predict a wide range of possible steady-state prevalence in the absence of interventions, illustrating the value of the calibration procedure and utility of the model for evaluating interventions. This model, which includes detailed behavioral patterns and HIV natural history, closely fits HIV prevalence estimates.

Suggested Citation

  • Alethea W McCormick & Nadia N Abuelezam & Erin R Rhode & Taige Hou & Rochelle P Walensky & Pamela P Pei & Jessica E Becker & Madeline A DiLorenzo & Elena Losina & Kenneth A Freedberg & Marc Lipsitch &, 2014. "Development, Calibration and Performance of an HIV Transmission Model Incorporating Natural History and Behavioral Patterns: Application in South Africa," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-12, May.
  • Handle: RePEc:plo:pone00:0098272
    DOI: 10.1371/journal.pone.0098272
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098272
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0098272&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0098272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph T Wu & Gabriel M Leung & Marc Lipsitch & Ben S Cooper & Steven Riley, 2009. "Hedging against Antiviral Resistance during the Next Influenza Pandemic Using Small Stockpiles of an Alternative Chemotherapy," PLOS Medicine, Public Library of Science, vol. 6(5), pages 1-11, May.
    2. Leigh Johnson & Rob Dorrington & Debbie Bradshaw & Victoria Pillay-Van Wyk & Thomas Rehle, 2009. "Sexual behaviour patterns in South Africa and their association with the spread of HIV: insights from a mathematical model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 21(11), pages 289-340.
    3. Ume L Abbas & Roy M Anderson & John W Mellors, 2007. "Potential Impact of Antiretroviral Chemoprophylaxis on HIV-1 Transmission in Resource-Limited Settings," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-11, September.
    4. Sevcíková, Hana & Raftery, Adrian E. & Waddell, Paul A., 2007. "Assessing uncertainty in urban simulations using Bayesian melding," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 652-669, July.
    5. I. Vieira & R. Cheng & P. Harper & V. Senna, 2010. "Small world network models of the dynamics of HIV infection," Annals of Operations Research, Springer, vol. 178(1), pages 173-200, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carel Pretorius & John Stover & Lori Bollinger & Nicolas Bacaër & Brian Williams, 2010. "Evaluating the Cost-Effectiveness of Pre-Exposure Prophylaxis (PrEP) and Its Impact on HIV-1 Transmission in South Africa," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-10, November.
    2. Dobromir Dimitrov & Marie-Claude Boily & Elizabeth R Brown & Timothy B Hallett, 2013. "Analytic Review of Modeling Studies of ARV Based PrEP Interventions Reveals Strong Influence of Drug-Resistance Assumptions on the Population-Level Effectiveness," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    3. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Toxvaerd, Flavio, 2010. "Recurrent Infection and Externalities in Prevention," CEPR Discussion Papers 8112, C.E.P.R. Discussion Papers.
    5. Theodore Tsekeris & Klimis Vogiatzoglou, 2011. "Spatial agent-based modeling of household and firm location with endogenous transport costs," Netnomics, Springer, vol. 12(2), pages 77-98, July.
    6. Roy Cerqueti & Antonio Iovanella & Raffaele Mattera, 2024. "Clustering networked funded European research activities through rank-size laws," Annals of Operations Research, Springer, vol. 342(3), pages 1707-1735, November.
    7. Matthew Eden & Rebecca Castonguay & Buyannemekh Munkhbat & Hari Balasubramanian & Chaitra Gopalappa, 2021. "Agent-based evolving network modeling: a new simulation method for modeling low prevalence infectious diseases," Health Care Management Science, Springer, vol. 24(3), pages 623-639, September.
    8. Manzo, Stefano & Nielsen, Otto Anker & Prato, Carlo Giacomo, 2015. "How uncertainty in input and parameters influences transport model :output A four-stage model case-study," Transport Policy, Elsevier, vol. 38(C), pages 64-72.
    9. Soora Rasouli & Harry Timmermans, 2013. "Probabilistic forecasting of time-dependent origin-destination matrices by a complex activity-based model system: effects of model uncertainty," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(3), pages 350-361, November.
    10. Black, Samantha & Wallace, Melissa & Middelkoop, Keren & Robbertze, Dante & Bennie, Thola & Wood, Robin & Bekker, Linda-Gail, 2014. "Improving HIV testing amongst adolescents through an integrated Youth Centre rewards program: Insights from South Africa," Children and Youth Services Review, Elsevier, vol. 45(C), pages 98-105.
    11. Snyder, Kate & Wallace, Melissa & Duby, Zoe & Aquino, Lisa D.H. & Stafford, Stephen & Hosek, Sybil & Futterman, Donna & Bekker, Linda-Gail, 2014. "Preliminary results from Hlanganani (Coming Together): A structured support group for HIV-infected adolescents piloted in Cape Town, South Africa," Children and Youth Services Review, Elsevier, vol. 45(C), pages 114-121.
    12. László Á. Kóczy, 2022. "Core-stability over networks with widespread externalities," Annals of Operations Research, Springer, vol. 318(2), pages 1001-1027, November.
    13. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    14. Aleksandr Saprykin & Ndaona Chokani & Reza S. Abhari, 2021. "Uncertainties of Sub-Scaled Supply and Demand in Agent-Based Mobility Simulations with Queuing Traffic Model," Networks and Spatial Economics, Springer, vol. 21(2), pages 261-290, June.
    15. Jeff Tayman, 2011. "Assessing Uncertainty in Small Area Forecasts: State of the Practice and Implementation Strategy," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(5), pages 781-800, October.
    16. Yin, Fulian & Pang, Hongyu & Xia, Xinyu & Shao, Xueying & Wu, Jianhong, 2021. "COVID-19 information contact and participation analysis and dynamic prediction in the Chinese Sina-microblog," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    17. Yang, Chao & Chen, Anthony & Xu, Xiangdong & Wong, S.C., 2013. "Sensitivity-based uncertainty analysis of a combined travel demand model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 225-244.
    18. Junjun Jiang & Xiaoyi Yang & Li Ye & Bo Zhou & Chuanyi Ning & Jiegang Huang & Bingyu Liang & Xiaoni Zhong & Ailong Huang & Renchuan Tao & Cunwei Cao & Hui Chen & Hao Liang, 2014. "Pre-Exposure Prophylaxis for the Prevention of HIV Infection in High Risk Populations: A Meta-Analysis of Randomized Controlled Trials," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    19. Eva Enns & Margaret Brandeau, 2011. "Inferring model parameters in network-based disease simulation," Health Care Management Science, Springer, vol. 14(2), pages 174-188, June.
    20. Robert Moss & James M McCaw & Jodie McVernon, 2011. "Diagnosis and Antiviral Intervention Strategies for Mitigating an Influenza Epidemic," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-10, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0098272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.