IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v570y2021ics0378437121000601.html
   My bibliography  Save this article

COVID-19 information contact and participation analysis and dynamic prediction in the Chinese Sina-microblog

Author

Listed:
  • Yin, Fulian
  • Pang, Hongyu
  • Xia, Xinyu
  • Shao, Xueying
  • Wu, Jianhong

Abstract

The outbreak of a novel coronavirus (COVID-19) aroused great public opinion in the Chinese Sina-microblog. To help in designing effective communication strategies during a major public health emergency, we analyze the real data of COVID-19 information and propose a comprehensive susceptible–reading–forwarding–immune (SRFI) model to understand the patterns of key information propagation considering both public contact and participation. We develop the SRFI model, based on the public reading quantity and forwarding quantity that denote contact and participation respectively, and take into account the behavior that users may re-enter another related topic during the attention phase or the participation phase freely. Data fitting using the real data of both reading quantity and forwarding quantity obtained from Chinese Sina-microblog can parameterize the model to make an accurate prediction of the COVID-19 public opinion trend until the next major news item occurs, and the sensitivity analysis provides the basic strategies for communication.

Suggested Citation

  • Yin, Fulian & Pang, Hongyu & Xia, Xinyu & Shao, Xueying & Wu, Jianhong, 2021. "COVID-19 information contact and participation analysis and dynamic prediction in the Chinese Sina-microblog," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
  • Handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000601
    DOI: 10.1016/j.physa.2021.125788
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121000601
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiajia & Zhao, Laijun & Huang, Rongbing, 2014. "SIRaRu rumor spreading model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 43-55.
    2. Qian, Zhen & Tang, Shaoting & Zhang, Xiao & Zheng, Zhiming, 2015. "The independent spreaders involved SIR Rumor model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 95-102.
    3. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.
    4. Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
    5. Ume L Abbas & Roy M Anderson & John W Mellors, 2007. "Potential Impact of Antiretroviral Chemoprophylaxis on HIV-1 Transmission in Resource-Limited Settings," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-11, September.
    6. Yi Zhang & Jiuping Xu, 2015. "A Rumor Spreading Model considering the Cumulative Effects of Memory," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-11, January.
    7. Laijun Zhao & Xiaoli Wang & Jiajia Wang & Xiaoyan Qiu & Wanlin Xie, 2014. "Rumor-Propagation Model with Consideration of Refutation Mechanism in Homogeneous Social Networks," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-11, August.
    8. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Chen, Yucheng & Wang, Jiajia & Huang, Wei, 2011. "Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2619-2625.
    9. Rui, Xiaobin & Meng, Fanrong & Wang, Zhixiao & Yuan, Guan & Du, Changjiang, 2018. "SPIR: The potential spreaders involved SIR model for information diffusion in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 254-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xujian Zhao & Wei Li, 2021. "Trend Prediction of Event Popularity from Microblogs," Future Internet, MDPI, vol. 13(9), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    2. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    3. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    4. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    5. Dayan, Fazal & Rafiq, Muhammad & Ahmed, Nauman & Baleanu, Dumitru & Raza, Ali & Ahmad, Muhammad Ozair & Iqbal, Muhammad, 2022. "Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    6. Wang, Zhixiao & Rui, Xiaobin & Yuan, Guan & Cui, Jingjing & Hadzibeganovic, Tarik, 2021. "Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    7. Zhang, Yuhuai & Zhu, Jianjun, 2019. "Dynamic behavior of an I2S2R rumor propagation model on weighted contract networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Lu, Peng & Yao, Qi & Lu, Pengfei, 2019. "Two-stage predictions of evolutionary dynamics during the rumor dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 349-369.
    9. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    10. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    11. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.
    12. Rui, Xiaobin & Meng, Fanrong & Wang, Zhixiao & Yuan, Guan & Du, Changjiang, 2018. "SPIR: The potential spreaders involved SIR model for information diffusion in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 254-269.
    13. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    14. Liu, Qiming & Li, Tao & Sun, Meici, 2017. "The analysis of an SEIR rumor propagation model on heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 372-380.
    15. Xia, Ling-Ling & Jiang, Guo-Ping & Song, Bo & Song, Yu-Rong, 2015. "Rumor spreading model considering hesitating mechanism in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 295-303.
    16. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    17. Yao, Yao & Xiao, Xi & Zhang, Chengping & Dou, Changsheng & Xia, Shutao, 2019. "Stability analysis of an SDILR model based on rumor recurrence on social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Zhu, Anding & Fu, Peihua & Zhang, Qinghe & Chen, Zhenyue, 2017. "Ponzi scheme diffusion in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 128-136.
    19. Shihang Wang & Zongmin Li & Yuhong Wang & Qi Zhang, 2019. "Machine Learning Methods to Predict Social Media Disaster Rumor Refuters," IJERPH, MDPI, vol. 16(8), pages 1-16, April.
    20. Yao Hongxing & Gao Xiangyang, 2018. "SE2IR Invest Market Rumor Spreading Model Considering Hesitating Mechanism," Journal of Systems Science and Information, De Gruyter, vol. 7(1), pages 54-69, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.