IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0090540.html
   My bibliography  Save this article

Exploiting Cell-To-Cell Variability To Detect Cellular Perturbations

Author

Listed:
  • Gautam Dey
  • Gagan D Gupta
  • Balaji Ramalingam
  • Mugdha Sathe
  • Satyajit Mayor
  • Mukund Thattai

Abstract

Any single-cell-resolved measurement generates a population distribution of phenotypes, characterized by a mean, a variance, and a shape. Here we show that changes in the shape of a phenotypic distribution can signal perturbations to cellular processes, providing a way to screen for underlying molecular machinery. We analyzed images of a Drosophila S2R+ cell line perturbed by RNA interference, and tracked 27 single-cell features which report on endocytic activity, and cell and nuclear morphology. In replicate measurements feature distributions had erratic means and variances, but reproducible shapes; RNAi down-regulation reliably induced shape deviations in at least one feature for 1072 out of 7131 genes surveyed, as revealed by a Kolmogorov-Smirnov-like statistic. We were able to use these shape deviations to identify a spectrum of genes that influenced cell morphology, nuclear morphology, and multiple pathways of endocytosis. By preserving single-cell data, our method was even able to detect effects invisible to a population-averaged analysis. These results demonstrate that cell-to-cell variability contains accessible and useful biological information, which can be exploited in existing cell-based assays.

Suggested Citation

  • Gautam Dey & Gagan D Gupta & Balaji Ramalingam & Mugdha Sathe & Satyajit Mayor & Mukund Thattai, 2014. "Exploiting Cell-To-Cell Variability To Detect Cellular Perturbations," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
  • Handle: RePEc:plo:pone00:0090540
    DOI: 10.1371/journal.pone.0090540
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090540
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0090540&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0090540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hannah H. Chang & Martin Hemberg & Mauricio Barahona & Donald E. Ingber & Sui Huang, 2008. "Transcriptome-wide noise controls lineage choice in mammalian progenitor cells," Nature, Nature, vol. 453(7194), pages 544-547, May.
    2. Rumana Bahar & Claudia H. Hartmann & Karl A. Rodriguez & Ashley D. Denny & Rita A. Busuttil & Martijn E. T. Dollé & R. Brent Calder & Gary B. Chisholm & Brad H. Pollock & Christoph A. Klein & Jan Vijg, 2006. "Increased cell-to-cell variation in gene expression in ageing mouse heart," Nature, Nature, vol. 441(7096), pages 1011-1014, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masa Tsuchiya & Vincent Piras & Sangdun Choi & Shizuo Akira & Masaru Tomita & Alessandro Giuliani & Kumar Selvarajoo, 2009. "Emergent Genome-Wide Control in Wildtype and Genetically Mutated Lipopolysaccarides-Stimulated Macrophages," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-13, March.
    2. Linghua Zhou & Yong Shen & Libo Jiang & Danni Yin & Jingxin Guo & Hui Zheng & Hao Sun & Rongling Wu & Yunqian Guo, 2015. "Systems Mapping for Hematopoietic Progenitor Cell Heterogeneity," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    3. Yelyzaveta Shlyakhtina & Bianca Bloechl & Maximiliano M. Portal, 2023. "BdLT-Seq as a barcode decay-based method to unravel lineage-linked transcriptome plasticity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Tian Hong & Jianhua Xing & Liwu Li & John J Tyson, 2011. "A Mathematical Model for the Reciprocal Differentiation of T Helper 17 Cells and Induced Regulatory T Cells," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-13, July.
    5. Rabajante, Jomar Fajardo & Talaue, Cherryl Ortega, 2015. "Equilibrium switching and mathematical properties of nonlinear interaction networks with concurrent antagonism and self-stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 166-182.
    6. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    7. Angélique Richard & Loïs Boullu & Ulysse Herbach & Arnaud Bonnafoux & Valérie Morin & Elodie Vallin & Anissa Guillemin & Nan Papili Gao & Rudiyanto Gunawan & Jérémie Cosette & Ophélie Arnaud & Jean-Ja, 2016. "Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irreversible Commitment in a Differentiation Process," PLOS Biology, Public Library of Science, vol. 14(12), pages 1-35, December.
    8. Johnston Iain G., 2014. "Efficient parametric inference for stochastic biological systems with measured variability," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 379-390, June.
    9. Kazunari Mouri & Yasushi Sako, 2013. "Optimality Conditions for Cell-Fate Heterogeneity That Maximize the Effects of Growth Factors in PC12 Cells," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-15, November.
    10. Tsuchiya, Masa & Selvarajoo, Kumar & Piras, Vincent & Tomita, Masaru & Giuliani, Alessandro, 2009. "Local and global responses in complex gene regulation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1738-1746.
    11. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    12. Peter D Tonge & Victor Olariu & Daniel Coca & Visakan Kadirkamanathan & Kelly E Burrell & Stephen A Billings & Peter W Andrews, 2010. "Prepatterning in the Stem Cell Compartment," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-10, May.
    13. Suzanne Gaudet & Sabrina L Spencer & William W Chen & Peter K Sorger, 2012. "Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.
    14. Omid Omrani & Anna Krepelova & Seyed Mohammad Mahdi Rasa & Dovydas Sirvinskas & Jing Lu & Francesco Annunziata & George Garside & Seerat Bajwa & Susanne Reinhardt & Lisa Adam & Sandra Käppel & Nadia D, 2023. "IFNγ-Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Julián Candia & Ryan Maunu & Meghan Driscoll & Angélique Biancotto & Pradeep Dagur & J Philip McCoy Jr & H Nida Sen & Lai Wei & Amos Maritan & Kan Cao & Robert B Nussenblatt & Jayanth R Banavar & Wolf, 2013. "From Cellular Characteristics to Disease Diagnosis: Uncovering Phenotypes with Supercells," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-10, September.
    16. Margaret J Tse & Brian K Chu & Cameron P Gallivan & Elizabeth L Read, 2018. "Rare-event sampling of epigenetic landscapes and phenotype transitions," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-28, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0090540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.