IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v13y2014i3p12n7.html
   My bibliography  Save this article

Efficient parametric inference for stochastic biological systems with measured variability

Author

Listed:
  • Johnston Iain G.

    (Department of Mathematics, Imperial College London, London SW7 2AZ, UK)

Abstract

Stochastic systems in biology often exhibit substantial variability within and between cells. This variability, as well as having dramatic functional consequences, provides information about the underlying details of the system’s behavior. It is often desirable to infer properties of the parameters governing such systems given experimental observations of the mean and variance of observed quantities. In some circumstances, analytic forms for the likelihood of these observations allow very efficient inference: we present these forms and demonstrate their usage. When likelihood functions are unavailable or difficult to calculate, we show that an implementation of approximate Bayesian computation (ABC) is a powerful tool for parametric inference in these systems. However, the calculations required to apply ABC to these systems can also be computationally expensive, relying on repeated stochastic simulations. We propose an ABC approach that cheaply eliminates unimportant regions of parameter space, by addressing computationally simple mean behavior before explicitly simulating the more computationally demanding variance behavior. We show that this approach leads to a substantial increase in speed when applied to synthetic and experimental datasets.

Suggested Citation

  • Johnston Iain G., 2014. "Efficient parametric inference for stochastic biological systems with measured variability," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 379-390, June.
  • Handle: RePEc:bpj:sagmbi:v:13:y:2014:i:3:p:12:n:7
    DOI: 10.1515/sagmb-2013-0061
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2013-0061
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2013-0061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
    2. William J. Blake & Mads KÆrn & Charles R. Cantor & J. J. Collins, 2003. "Noise in eukaryotic gene expression," Nature, Nature, vol. 422(6932), pages 633-637, April.
    3. repec:dau:papers:123456789/5724 is not listed on IDEAS
    4. Hannah H. Chang & Martin Hemberg & Mauricio Barahona & Donald E. Ingber & Sui Huang, 2008. "Transcriptome-wide noise controls lineage choice in mammalian progenitor cells," Nature, Nature, vol. 453(7194), pages 544-547, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongying & Yao, Chengli, 2017. "The influence of internal noise on the detection of hormonal signal with the existence of external noise in a cell system," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 1-6.
    2. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    3. Chih-Yuan Hsu & Bor-Sen Chen, 2016. "Systematic Design of a Metal Ion Biosensor: A Multi-Objective Optimization Approach," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    4. George Karabatsos, 2023. "Approximate Bayesian computation using asymptotically normal point estimates," Computational Statistics, Springer, vol. 38(2), pages 531-568, June.
    5. Masa Tsuchiya & Vincent Piras & Sangdun Choi & Shizuo Akira & Masaru Tomita & Alessandro Giuliani & Kumar Selvarajoo, 2009. "Emergent Genome-Wide Control in Wildtype and Genetically Mutated Lipopolysaccarides-Stimulated Macrophages," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-13, March.
    6. David J Price & Alexandre Breuzé & Richard Dybowski & Piero Mastroeni & Olivier Restif, 2017. "An efficient moments-based inference method for within-host bacterial infection dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-27, November.
    7. Daniel Silk & Paul D W Kirk & Chris P Barnes & Tina Toni & Michael P H Stumpf, 2014. "Model Selection in Systems Biology Depends on Experimental Design," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
    8. Gautam Dey & Gagan D Gupta & Balaji Ramalingam & Mugdha Sathe & Satyajit Mayor & Mukund Thattai, 2014. "Exploiting Cell-To-Cell Variability To Detect Cellular Perturbations," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    9. Blasi, Monica Francesca & Casorelli, Ida & Colosimo, Alfredo & Blasi, Francesco Simone & Bignami, Margherita & Giuliani, Alessandro, 2005. "A recursive network approach can identify constitutive regulatory circuits in gene expression data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 349-370.
    10. Frederick Callaway & Antonio Rangel & Thomas L Griffiths, 2021. "Fixation patterns in simple choice reflect optimal information sampling," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-29, March.
    11. Chunjuan Zhu & Zibo Chen & Qiwen Sun, 2022. "Stochastic Transcription with Alterable Synthesis Rates," Mathematics, MDPI, vol. 10(13), pages 1-20, June.
    12. Aushev, Alexander & Pesonen, Henri & Heinonen, Markus & Corander, Jukka & Kaski, Samuel, 2022. "Likelihood-free inference with deep Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    13. Linghua Zhou & Yong Shen & Libo Jiang & Danni Yin & Jingxin Guo & Hui Zheng & Hao Sun & Rongling Wu & Yunqian Guo, 2015. "Systems Mapping for Hematopoietic Progenitor Cell Heterogeneity," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    14. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    15. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    16. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.
    17. Michael W Klymkowsky & Kathy Garvin-Doxas, 2008. "Recognizing Student Misconceptions through Ed's Tools and the Biology Concept Inventory," PLOS Biology, Public Library of Science, vol. 6(1), pages 1-4, January.
    18. Diana Monteoliva & Christina B McCarthy & Luis Diambra, 2013. "Noise Minimisation in Gene Expression Switches," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    19. Burton W Andrews & Pablo A Iglesias, 2007. "An Information-Theoretic Characterization of the Optimal Gradient Sensing Response of Cells," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-9, August.
    20. Elijah Roberts & Andrew Magis & Julio O Ortiz & Wolfgang Baumeister & Zaida Luthey-Schulten, 2011. "Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:13:y:2014:i:3:p:12:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.