IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0084694.html
   My bibliography  Save this article

Optimized Strategy for the Control and Prevention of Newly Emerging Influenza Revealed by the Spread Dynamics Model

Author

Listed:
  • Wen-Dou Zhang
  • Zheng-Hu Zu
  • Qing Xu
  • Zhi-Jing Xu
  • Jin-Jie Liu
  • Tao Zheng

Abstract

No matching vaccine is immediately available when a novel influenza strain breaks out. Several nonvaccine-related strategies must be employed to control an influenza epidemic, including antiviral treatment, patient isolation, and immigration detection. This paper presents the development and application of two regional dynamic models of influenza with Pontryagin’s Maximum Principle to determine the optimal control strategies for an epidemic and the corresponding minimum antiviral stockpiles. Antiviral treatment was found to be the most effective measure to control new influenza outbreaks. In the case of inadequate antiviral resources, the preferred approach was the centralized use of antiviral resources in the early stage of the epidemic. Immigration detection was the least cost-effective; however, when used in combination with the other measures, it may play a larger role. The reasonable mix of the three control measures could reduce the number of clinical cases substantially, to achieve the optimal control of new influenza.

Suggested Citation

  • Wen-Dou Zhang & Zheng-Hu Zu & Qing Xu & Zhi-Jing Xu & Jin-Jie Liu & Tao Zheng, 2014. "Optimized Strategy for the Control and Prevention of Newly Emerging Influenza Revealed by the Spread Dynamics Model," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0084694
    DOI: 10.1371/journal.pone.0084694
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084694
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0084694&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0084694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raymond Gani & Steve Leach, 2001. "Transmission potential of smallpox in contemporary populations," Nature, Nature, vol. 414(6865), pages 748-751, December.
    2. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Budzynski & Aneta Luczkiewicz & Jacek Szmaglinski, 2021. "Assessing the Risk in Urban Public Transport for Epidemiologic Factors," Energies, MDPI, vol. 14(15), pages 1-34, July.
    2. Mishra, Bimal Kumar & Keshri, Ajit Kumar & Rao, Yerra Shankar & Mishra, Binay Kumar & Mahato, Buddhadeo & Ayesha, Syeda & Rukhaiyyar, Bansidhar Prasad & Saini, Dinesh Kumar & Singh, Aditya Kumar, 2020. "COVID-19 created chaos across the globe: Three novel quarantine epidemic models," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    4. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    5. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    6. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    7. Antonio Diez de los Rios, 2022. "A macroeconomic model of an epidemic with silent transmission and endogenous self‐isolation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 581-625, February.
    8. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    9. Elisa Giannone & Nuno Paixao & Xinle Pang, 2021. "The Geography of Pandemic Containment," Staff Working Papers 21-26, Bank of Canada.
    10. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    12. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    13. Christos Nicolaides & Demetris Avraam & Luis Cueto‐Felgueroso & Marta C. González & Ruben Juanes, 2020. "Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 723-740, April.
    14. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    15. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    16. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    17. Yonatan Dinku & Boyd Hunter & Francis Markham, 2020. "How might COVID-19 affect the Indigenous labour market?," Australian Journal of Labour Economics (AJLE), Bankwest Curtin Economics Centre (BCEC), Curtin Business School, vol. 23(2), pages 189-209.
    18. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    20. Keogh-Brown, Marcus Richard & Smith, Richard David, 2008. "The economic impact of SARS: How does the reality match the predictions?," Health Policy, Elsevier, vol. 88(1), pages 110-120, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0084694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.