IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0079584.html
   My bibliography  Save this article

Association between microRNA Polymorphisms and Cancer Risk Based on the Findings of 66 Case-Control Studies

Author

Listed:
  • Xiao Pin Ma
  • Ting Zhang
  • Bo Peng
  • Long Yu
  • De Ke Jiang

Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules, which participate in diverse biological processes and may regulate tumor suppressor genes or oncogenes. Single nucleotide polymorphisms (SNPs) in miRNA may contribute to diverse functional consequences, including cancer development, by altering miRNA expression. Numerous studies have shown the association between miRNA SNPs and cancer risk; however, the results are generally debatable and inconclusive, mainly due to limited statistical power. To assess the relationship between the five most common SNPs (miR-146a rs2910164, miR-196a2 rs11614913, miR-499 rs3746444, miR-149 rs2292832, and miR-27a rs895919) and the risk cancer development, we performed a meta-analysis of 66 published case-control studies. Crude odds ratios at 95% confidence intervals were used to investigate the strength of the association. No association was observed between rs2910164 and cancer risk in the overall group. However, in stratified analysis, we found that either the rs2910164 C allele or the CC genotype was protective against bladder cancer, prostate cancer, cervical cancer, and colorectal cancer, whereas it was a risk factor for papillary thyroid carcinoma and squamous cell carcinoma of the head and neck (SCCHN). Further, rs11614913 was found to be significantly associated with decreased cancer risk, in particular, for bladder cancer, gastric cancer, and SCCHN. For miR-499, a significant association was found between the rs3746444 polymorphism and cancer risk in pooled analysis. In subgroup analysis, similar results were mainly observed for breast cancer. Finally, no association was found between rs2292832 and rs895919 polymorphisms and cancer risk in the overall group and in stratified analysis. In summary, miR-196a2 rs11614913, miR-146a rs2910164, and miR-499 rs3746444 are risk factors for cancer development, whereas mir-149 rs2292832 and miR-27a rs895919 are not associated with cancer risk.

Suggested Citation

  • Xiao Pin Ma & Ting Zhang & Bo Peng & Long Yu & De Ke Jiang, 2013. "Association between microRNA Polymorphisms and Cancer Risk Based on the Findings of 66 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
  • Handle: RePEc:plo:pone00:0079584
    DOI: 10.1371/journal.pone.0079584
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079584
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0079584&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0079584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhiwei Chen & Ling Xu & Xiangyun Ye & Shengping Shen & Ziming Li & Xiaomin Niu & Shun Lu, 2013. "Polymorphisms of microRNA Sequences or Binding Sites and Lung Cancer: A Meta-Analysis and Systematic Review," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.
    2. Fang Wang & Guoping Sun & Yanfeng Zou & Yuanyuan Li & Li Hao & Faming Pan, 2012. "Association of microRNA-499 rs3746444 Polymorphism with Cancer Risk: Evidence from 7188 Cases and 8548 Controls," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-6, September.
    3. Haiyan Chu & Meilin Wang & Danni Shi & Lan Ma & Zhizhong Zhang & Na Tong & Xinying Huo & Wei Wang & Dewei Luo & Yan Gao & Zhengdong Zhang, 2011. "Hsa-miR-196a2 Rs11614913 Polymorphism Contributes to Cancer Susceptibility: Evidence from 15 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-6, March.
    4. Jing Guo & Mingjuan Jin & Mingwu Zhang & Kun Chen, 2012. "A Genetic Variant in miR-196a2 Increased Digestive System Cancer Risks: A Meta-Analysis of 15 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-7, January.
    5. Qian Xu & Cai-yun He & Jing-wei Liu & Yuan Yuan, 2013. "Pre-miR-27a rs895819A/G Polymorphisms in Cancer: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-7, June.
    6. Fang Wang & Guoping Sun & Yanfeng Zou & Lulu Fan & Bing Song, 2012. "Lack of Association of miR-146a rs2910164 Polymorphism with Gastrointestinal Cancers: Evidence from 10206 Subjects," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-7, June.
    7. Miao Hu & Lianying Zhao & Surong Hu & Jingting Yang, 2013. "The Association between Two Common Polymorphisms in MicroRNAs and Hepatocellular Carcinoma Risk in Asian Population," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
    8. Zhengrong Yuan & Xu Zeng & Dan Yang & Weilu Wang & Zhihua Liu, 2013. "Effects of Common Polymorphism rs11614913 in Hsa-miR-196a2 on Lung Cancer Risk," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-8, April.
    9. Man-Tang Qiu & Jing-Wen Hu & Xiang-Xiang Ding & Xin Yang & Zhi Zhang & Rong Yin & Lin Xu, 2012. "Hsa-miR-499 rs3746444 Polymorphism Contributes to Cancer Risk: A Meta-Analysis of 12 Studies," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-7, December.
    10. Jun Lu & Gad Getz & Eric A. Miska & Ezequiel Alvarez-Saavedra & Justin Lamb & David Peck & Alejandro Sweet-Cordero & Benjamin L. Ebert & Raymond H. Mak & Adolfo A. Ferrando & James R. Downing & Tyler , 2005. "MicroRNA expression profiles classify human cancers," Nature, Nature, vol. 435(7043), pages 834-838, June.
    11. Zhongxia Wang & Yin Cao & Chunping Jiang & Guang Yang & Junhua Wu & Yitao Ding, 2012. "Lack of Association of Two Common Polymorphisms rs2910164 and rs11614913 with Susceptibility to Hepatocellular Carcinoma: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-8, June.
    12. Victor Ambros, 2004. "The functions of animal microRNAs," Nature, Nature, vol. 431(7006), pages 350-355, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kshitij Srivastava & Anvesha Srivastava, 2012. "Comprehensive Review of Genetic Association Studies and Meta-Analyses on miRNA Polymorphisms and Cancer Risk," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-1, November.
    2. Li Li & Yunjian Sheng & Lin Lv & Jian Gao, 2013. "The Association between Two MicroRNA Variants (miR-499, miR-149) and Gastrointestinal Cancer Risk: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    3. Zhengrong Yuan & Xu Zeng & Dan Yang & Weilu Wang & Zhihua Liu, 2013. "Effects of Common Polymorphism rs11614913 in Hsa-miR-196a2 on Lung Cancer Risk," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-8, April.
    4. LuShun Zhang & HaoJie Qin & Xuan Guan & Kui Zhang & ZhiRong Liu, 2013. "The TLR9 Gene Polymorphisms and the Risk of Cancer: Evidence from a Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-7, August.
    5. Wei Meng & Joseph P McElroy & Stefano Volinia & Jeff Palatini & Sarah Warner & Leona W Ayers & Kamalakannan Palanichamy & Arnab Chakravarti & Tim Lautenschlaeger, 2013. "Comparison of MicroRNA Deep Sequencing of Matched Formalin-Fixed Paraffin-Embedded and Fresh Frozen Cancer Tissues," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-9, May.
    6. Man-Tang Qiu & Jing-Wen Hu & Xiang-Xiang Ding & Xin Yang & Zhi Zhang & Rong Yin & Lin Xu, 2012. "Hsa-miR-499 rs3746444 Polymorphism Contributes to Cancer Risk: A Meta-Analysis of 12 Studies," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-7, December.
    7. Zhongxia Wang & Yin Cao & Chunping Jiang & Guang Yang & Junhua Wu & Yitao Ding, 2012. "Lack of Association of Two Common Polymorphisms rs2910164 and rs11614913 with Susceptibility to Hepatocellular Carcinoma: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-8, June.
    8. Yifang Han & Rui Pu & Xue Han & Jun Zhao & Yuwei Zhang & Qi Zhang & Jianhua Yin & Jiaxin Xie & Qiuxia Shen & Yang Deng & Yibo Ding & Weiping Li & Juhong Li & Hongwei Zhang & Guangwen Cao, 2013. "Associations of pri-miR-34b/c and pre-miR-196a2 Polymorphisms and Their Multiplicative Interactions with Hepatitis B Virus Mutations with Hepatocellular Carcinoma Risk," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    9. Daniel G Weber & Georg Johnen & Oleksandr Bryk & Karl-Heinz Jöckel & Thomas Brüning, 2012. "Identification of miRNA-103 in the Cellular Fraction of Human Peripheral Blood as a Potential Biomarker for Malignant Mesothelioma – A Pilot Study," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-9, January.
    10. Shubin W Shahab & Lilya V Matyunina & Roman Mezencev & L DeEtte Walker & Nathan J Bowen & Benedict B Benigno & John F McDonald, 2011. "Evidence for the Complexity of MicroRNA-Mediated Regulation in Ovarian Cancer: A Systems Approach," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-12, July.
    11. José María Galván-Román & Ángel Lancho-Sánchez & Sergio Luquero-Bueno & Lorena Vega-Piris & Jose Curbelo & Marcos Manzaneque-Pradales & Manuel Gómez & Hortensia de la Fuente & Mara Ortega-Gómez & Javi, 2020. "Usefulness of circulating microRNAs miR-146a and miR-16-5p as prognostic biomarkers in community-acquired pneumonia," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-13, October.
    12. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    13. Yanyan Wang & Yujie Zhang & Chi Pan & Feixia Ma & Suzhan Zhang, 2015. "Prediction of Poor Prognosis in Breast Cancer Patients Based on MicroRNA-21 Expression: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-13, February.
    14. Roy Navon & Hui Wang & Israel Steinfeld & Anya Tsalenko & Amir Ben-Dor & Zohar Yakhini, 2009. "Novel Rank-Based Statistical Methods Reveal MicroRNAs with Differential Expression in Multiple Cancer Types," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-10, November.
    15. Thierry Chekouo & Francesco C. Stingo & James D. Doecke & Kim-Anh Do, 2015. "miRNA–target gene regulatory networks: A Bayesian integrative approach to biomarker selection with application to kidney cancer," Biometrics, The International Biometric Society, vol. 71(2), pages 428-438, June.
    16. Xing Chen & Li Huang, 2017. "LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-28, December.
    17. Zhenqiang Fang & Fanglin Chen & Xiangwei Wang & Shanhong Yi & Wei Chen & Gang Ye, 2013. "XRCC1 Arg194Trp and Arg280His Polymorphisms Increase Bladder Cancer Risk in Asian Population: Evidence from a Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
    18. Ang Li & Yingwei Deng & Yan Tan & Min Chen, 2021. "A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    19. Charlotte Glinge & Sebastian Clauss & Kim Boddum & Reza Jabbari & Javad Jabbari & Bjarke Risgaard & Philipp Tomsits & Bianca Hildebrand & Stefan Kääb & Reza Wakili & Thomas Jespersen & Jacob Tfelt-Han, 2017. "Stability of Circulating Blood-Based MicroRNAs – Pre-Analytic Methodological Considerations," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    20. Jian Zhang & Charing C N Chong & George G Chen & Paul B S Lai, 2015. "A Seven-microRNA Expression Signature Predicts Survival in Hepatocellular Carcinoma," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0079584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.