IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0051666.html
   My bibliography  Save this article

An Exotic Long-Term Pattern in Stock Price Dynamics

Author

Listed:
  • Jianrong Wei
  • Jiping Huang

Abstract

Background: To accurately predict the movement of stock prices is always of both academic importance and practical value. So far, a lot of research has been reported to help understand the behavior of stock prices. However, some of the existing theories tend to render us the belief that the time series of stock prices are unpredictable on a long-term timescale. The question arises whether the long-term predictability exists in stock price dynamics. Methodology/Principal Findings: In this work, we analyze the price reversals in the US stock market and the Chinese stock market on the basis of a renormalization method. The price reversals are divided into two types: retracements (the downward trends after upward trends) and rebounds (the upward trends after downward trends), of which the intensities are described by dimensionless quantities, and , respectively. We reveal that for both mature and emerging markets, the distribution of either retracements or rebounds shows two characteristic values, 0.335 and 0.665, both of which are robust over the long term. Conclusions/Significance: The methodology presented here provides a way to quantify the stock price reversals. Our findings strongly support the existence of the long-term predictability in stock price dynamics, and may offer a hint on how to predict the long-term movement of stock prices.

Suggested Citation

  • Jianrong Wei & Jiping Huang, 2012. "An Exotic Long-Term Pattern in Stock Price Dynamics," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-5, December.
  • Handle: RePEc:plo:pone00:0051666
    DOI: 10.1371/journal.pone.0051666
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051666
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0051666&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0051666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dror Y Kenett & Matthias Raddant & Thomas Lux & Eshel Ben-Jacob, 2012. "Evolvement of Uniformity and Volatility in the Stressed Global Financial Village," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    2. Y. Shapira & D. Y. Kenett & E. Ben-Jacob, 2009. "The Index cohesive effect on stock market correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(4), pages 657-669, December.
    3. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    4. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    5. Miguel A Fuentes & Austin Gerig & Javier Vicente, 2009. "Universal Behavior of Extreme Price Movements in Stock Markets," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-4, December.
    6. Petre Caraiani, 2012. "Evidence of Multifractality from Emerging European Stock Markets," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    7. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    8. Miguel A. Fuentes & Austin Gerig & Javier Vicente, 2009. "Universal Behavior of Extreme Price Movements in Stock Markets," Papers 0912.5448, arXiv.org.
    9. Dror Y. Kenett & Yoash Shapira & Asaf Madi & Sharron Bransburg-Zabary & Gitit Gur-Gershgoren & Eshel Ben-Jacob, 2010. "Dynamics of Stock Market Correlations," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(3), pages 330-340, November.
    10. Mantegna, Rosario N & Palágyi, Zoltán & Stanley, H.Eugene, 1999. "Applications of statistical mechanics to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 216-221.
    11. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    12. Sukanto Bhattacharya & Kuldeep Kumar, 2006. "A Computational Exploration of the Efficacy of Fibonacci Sequences in Technical Analysis and Trading," Annals of Economics and Finance, Society for AEF, vol. 7(1), pages 185-196, May.
    13. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    14. Kunyu Song & Kenan An & Guang Yang & Jiping Huang, 2012. "Risk-Return Relationship in a Complex Adaptive System," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    15. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    16. Dror Y Kenett & Yoash Shapira & Asaf Madi & Sharron Bransburg-Zabary & Gitit Gur-Gershgoren & Eshel Ben-Jacob, 2011. "Index Cohesive Force Analysis Reveals That the US Market Became Prone to Systemic Collapses Since 2002," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-8, April.
    17. Johnson, Neil F. & Jefferies, Paul & Hui, Pak Ming, 2003. "Financial Market Complexity," OUP Catalogue, Oxford University Press, number 9780198526650.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, H.S. & Shen, X.Y. & Huang, J.P., 2016. "Pattern of trends in stock markets as revealed by the renormalization method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 340-346.
    2. Lu Liu & Jianrong Wei & Jiping Huang, 2013. "Scaling and Volatility of Breakouts and Breakdowns in Stock Price Dynamics," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-6, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, J.R. & Huang, J.P. & Hui, P.M., 2013. "An agent-based model of stock markets incorporating momentum investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2728-2735.
    2. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    3. Lu Liu & Jianrong Wei & Jiping Huang, 2013. "Scaling and Volatility of Breakouts and Breakdowns in Stock Price Dynamics," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-6, December.
    4. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    5. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    6. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    7. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    8. Matthew Oldham, 2019. "Understanding How Short-Termism and a Dynamic Investor Network Affects Investor Returns: An Agent-Based Perspective," Complexity, Hindawi, vol. 2019, pages 1-21, July.
    9. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    10. Semei Coronado-Ram'irez & Pedro Celso-Arellano & Omar Rojas, 2014. "Adaptive Market Efficiency of Agricultural Commodity Futures Contracts," Papers 1412.8017, arXiv.org, revised Mar 2015.
    11. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    12. Li, Da-Ye & Nishimura, Yusaku & Men, Ming, 2014. "Fractal markets: Liquidity and investors on different time horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 144-151.
    13. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    14. Matthias Raddant & Friedrich Wagner, 2017. "Transitions in the stock markets of the US, UK and Germany," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 289-297, February.
    15. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    16. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    17. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    18. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    19. Raddant, Matthias & Wagner, Friedrich, 2013. "Phase transition in the S&P stock market," Kiel Working Papers 1846, Kiel Institute for the World Economy (IfW Kiel).
    20. Jørgen Vitting Andersen & Andrzej Nowak & Giulia Rotundo & Lael Parrott & Sebastian Martinez, 2011. "“Price-Quakes” Shaking the World's Stock Exchanges," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-8, November.
    21. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0051666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.