IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0043819.html
   My bibliography  Save this article

Gene Regulatory Network Inference from Multifactorial Perturbation Data Using both Regression and Correlation Analyses

Author

Listed:
  • Jie Xiong
  • Tong Zhou

Abstract

An important problem in systems biology is to reconstruct gene regulatory networks (GRNs) from experimental data and other a priori information. The DREAM project offers some types of experimental data, such as knockout data, knockdown data, time series data, etc. Among them, multifactorial perturbation data are easier and less expensive to obtain than other types of experimental data and are thus more common in practice. In this article, a new algorithm is presented for the inference of GRNs using the DREAM4 multifactorial perturbation data. The GRN inference problem among genes is decomposed into different regression problems. In each of the regression problems, the expression level of a target gene is predicted solely from the expression level of a potential regulation gene. For different potential regulation genes, different weights for a specific target gene are constructed by using the sum of squared residuals and the Pearson correlation coefficient. Then these weights are normalized to reflect effort differences of regulating distinct genes. By appropriately choosing the parameters of the power law, we constructe a 0–1 integer programming problem. By solving this problem, direct regulation genes for an arbitrary gene can be estimated. And, the normalized weight of a gene is modified, on the basis of the estimation results about the existence of direct regulations to it. These normalized and modified weights are used in queuing the possibility of the existence of a corresponding direct regulation. Computation results with the DREAM4 In Silico Size 100 Multifactorial subchallenge show that estimation performances of the suggested algorithm can even outperform the best team. Using the real data provided by the DREAM5 Network Inference Challenge, estimation performances can be ranked third. Furthermore, the high precision of the obtained most reliable predictions shows the suggested algorithm may be helpful in guiding biological experiment designs.

Suggested Citation

  • Jie Xiong & Tong Zhou, 2012. "Gene Regulatory Network Inference from Multifactorial Perturbation Data Using both Regression and Correlation Analyses," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
  • Handle: RePEc:plo:pone00:0043819
    DOI: 10.1371/journal.pone.0043819
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043819
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043819&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0043819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vân Anh Huynh-Thu & Alexandre Irrthum & Louis Wehenkel & Pierre Geurts, 2010. "Inferring Regulatory Networks from Expression Data Using Tree-Based Methods," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-10, September.
    2. Patricia Menéndez & Yiannis A I Kourmpetis & Cajo J F ter Braak & Fred A van Eeuwijk, 2010. "Gene Regulatory Networks from Multifactorial Perturbations Using Graphical Lasso: Application to the DREAM4 Challenge," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    2. Jie Xiong & Tong Zhou, 2013. "A Kalman-Filter Based Approach to Identification of Time-Varying Gene Regulatory Networks," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-8, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Liu & Shao-Wu Zhang & Wei-Feng Guo & Ze-Gang Wei & Luonan Chen, 2016. "Inference of Gene Regulatory Network Based on Local Bayesian Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.
    2. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    3. Marco Grimaldi & Roberto Visintainer & Giuseppe Jurman, 2011. "RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-19, December.
    4. Marius Arend & Yizhong Yuan & M. Águila Ruiz-Sola & Nooshin Omranian & Zoran Nikoloski & Dimitris Petroutsos, 2023. "Widening the landscape of transcriptional regulation of green algal photoprotection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Takeshi Hase & Samik Ghosh & Ryota Yamanaka & Hiroaki Kitano, 2013. "Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-16, November.
    6. Ruonan Wu & Michelle R. Davison & William C. Nelson & Montana L. Smith & Mary S. Lipton & Janet K. Jansson & Ryan S. McClure & Jason E. McDermott & Kirsten S. Hofmockel, 2023. "Hi-C metagenome sequencing reveals soil phage–host interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Kinzy Tyler G. & Starr Timothy K. & Tseng George C. & Ho Yen-Yi, 2019. "Meta-analytic framework for modeling genetic coexpression dynamics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    8. Li, Jiawen & Meng, Lu & Zhang, Zelin & Yang, Kejia, 2023. "Low-frequency, high-impact: Discovering important rare events from UGC," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    9. Yichi Niu & Jiayi Luo & Chenghang Zong, 2024. "Single-cell total-RNA profiling unveils regulatory hubs of transcription factors," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Lingfei Wang & Tom Michoel, 2017. "Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-26, August.
    11. Viswanadham Sridhara & Austin G Meyer & Piyush Rai & Jeffrey E Barrick & Pradeep Ravikumar & Daniel Segrè & Claus O Wilke, 2014. "Predicting Growth Conditions from Internal Metabolic Fluxes in an In-Silico Model of E. coli," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-22, December.
    12. Mingyi Wang & Jerome Verdier & Vagner A Benedito & Yuhong Tang & Jeremy D Murray & Yinbing Ge & Jörg D Becker & Helena Carvalho & Christian Rogers & Michael Udvardi & Ji He, 2013. "LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    13. Fei Wang & Peiwen Ding & Xue Liang & Xiangning Ding & Camilla Blunk Brandt & Evelina Sjöstedt & Jiacheng Zhu & Saga Bolund & Lijing Zhang & Laura P. M. H. Rooij & Lihua Luo & Yanan Wei & Wandong Zhao , 2022. "Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Qiao Wen Tan & Peng Ken Lim & Zhong Chen & Asher Pasha & Nicholas Provart & Marius Arend & Zoran Nikoloski & Marek Mutwil, 2023. "Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Alfonso Monaco & Nicola Amoroso & Loredana Bellantuono & Eufemia Lella & Angela Lombardi & Anna Monda & Andrea Tateo & Roberto Bellotti & Sabina Tangaro, 2019. "Shannon entropy approach reveals relevant genes in Alzheimer’s disease," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-29, December.
    16. Bastien Lextrait, 2021. "Scaling up SME's credit scoring scope with LightGBM," EconomiX Working Papers 2021-25, University of Paris Nanterre, EconomiX.
    17. Maghsoodi, Masoume, 2016. "A New Method to Build Gene Regulation Network Based on Fuzzy Hierarchical Clustering Methods," MPRA Paper 79743, University Library of Munich, Germany.
    18. Evan J Molinelli & Anil Korkut & Weiqing Wang & Martin L Miller & Nicholas P Gauthier & Xiaohong Jing & Poorvi Kaushik & Qin He & Gordon Mills & David B Solit & Christine A Pratilas & Martin Weigt & A, 2013. "Perturbation Biology: Inferring Signaling Networks in Cellular Systems," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-23, December.
    19. Ze Yan & Ji Yang & Wen-Tian Wei & Ming-Liang Zhou & Dong-Xin Mo & Xing Wan & Rui Ma & Mei-Ming Wu & Jia-Hui Huang & Ya-Jing Liu & Feng-Hua Lv & Meng-Hua Li, 2024. "A time-resolved multi-omics atlas of transcriptional regulation in response to high-altitude hypoxia across whole-body tissues," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    20. Hyunje Yang & Honggeun Lim & Haewon Moon & Qiwen Li & Sooyoun Nam & Jaehoon Kim & Hyung Tae Choi, 2022. "Simple Optimal Sampling Algorithm to Strengthen Digital Soil Mapping Using the Spatial Distribution of Machine Learning Predictive Uncertainty: A Case Study for Field Capacity Prediction," Land, MDPI, vol. 11(11), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0043819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.