IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226190.html
   My bibliography  Save this article

Shannon entropy approach reveals relevant genes in Alzheimer’s disease

Author

Listed:
  • Alfonso Monaco
  • Nicola Amoroso
  • Loredana Bellantuono
  • Eufemia Lella
  • Angela Lombardi
  • Anna Monda
  • Andrea Tateo
  • Roberto Bellotti
  • Sabina Tangaro

Abstract

Alzheimer’s disease (AD) is the most common type of dementia and affects millions of people worldwide. Since complex diseases are often the result of combinations of gene interactions, microarray data and gene co-expression analysis can provide tools for addressing complexity. Our study aimed to find groups of interacting genes that are relevant in the development of AD. In this perspective, we implemented a method proposed in a previous work to detect gene communities linked to AD. Our strategy combined co-expression network analysis with the study of Shannon entropy of the betweenness. We analyzed the publicly available GSE1297 dataset, achieved from the GEO database in NCBI, containing hippocampal gene expression of 9 control and 22 AD human subjects. Co-expressed genes were clustered into different communities. Two communities of interest (composed by 72 and 39 genes) were found by calculating the correlation coefficient between communities and clinical features. The detected communities resulted stable, replicated on two independent datasets and mostly enriched in pathways closely associated with neuro-degenative diseases. A comparison between our findings and other module detection techniques showed that the detected communities were more related to AD phenotype. Lastly, the hub genes within the two communities of interest were identified by means of a centrality analysis and a bootstrap procedure. The communities of the hub genes presented even stronger correlation with clinical features. These findings and further explorations on the detected genes could shed light on the genetic aspects related with physiological aspects of Alzheimer’s disease.

Suggested Citation

  • Alfonso Monaco & Nicola Amoroso & Loredana Bellantuono & Eufemia Lella & Angela Lombardi & Anna Monda & Andrea Tateo & Roberto Bellotti & Sabina Tangaro, 2019. "Shannon entropy approach reveals relevant genes in Alzheimer’s disease," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-29, December.
  • Handle: RePEc:plo:pone00:0226190
    DOI: 10.1371/journal.pone.0226190
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226190
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226190&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang Bin & Horvath Steve, 2005. "A General Framework for Weighted Gene Co-Expression Network Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-45, August.
    2. Vân Anh Huynh-Thu & Alexandre Irrthum & Louis Wehenkel & Pierre Geurts, 2010. "Inferring Regulatory Networks from Expression Data Using Tree-Based Methods," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-10, September.
    3. Alfonso Monaco & Anna Monda & Nicola Amoroso & Alessandro Bertolino & Giuseppe Blasi & Pasquale Di Carlo & Marco Papalino & Giulio Pergola & Sabina Tangaro & Roberto Bellotti, 2018. "A complex network approach reveals a pivotal substructure of genes linked to schizophrenia," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-18, January.
    4. Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
    5. John A. Dawson & Christina Kendziorski, 2012. "An Empirical Bayesian Approach for Identifying Differential Coexpression in High-Throughput Experiments," Biometrics, The International Biometric Society, vol. 68(2), pages 455-465, June.
    6. Jeffrey D Allen & Yang Xie & Min Chen & Luc Girard & Guanghua Xiao, 2012. "Comparing Statistical Methods for Constructing Large Scale Gene Networks," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-9, January.
    7. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    8. Nankervis, John C., 2005. "Computational algorithms for double bootstrap confidence intervals," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 461-475, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kinzy Tyler G. & Starr Timothy K. & Tseng George C. & Ho Yen-Yi, 2019. "Meta-analytic framework for modeling genetic coexpression dynamics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    2. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    3. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    4. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    5. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    6. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    7. Yan Guo & Hui Yu & Haocan Song & Jiapeng He & Olufunmilola Oyebamiji & Huining Kang & Jie Ping & Scott Ness & Yu Shyr & Fei Ye, 2021. "MetaGSCA: A tool for meta-analysis of gene set differential coexpression," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-15, May.
    8. Xue Jiang & Han Zhang & Xiongwen Quan & Zhandong Liu & Yanbin Yin, 2017. "Disease-related gene module detection based on a multi-label propagation clustering algorithm," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    9. Mandel, Antoine & Landini, Simone & Gallegati, Mauro & Gintis, Herbert, 2015. "Price dynamics, financial fragility and aggregate volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 257-277.
    10. Gungor, Sermin & Luger, Richard, 2015. "Bootstrap Tests Of Mean-Variance Efficiency With Multiple Portfolio Groupings," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 35-65, Mars-Juin.
    11. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    12. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    13. Peter Langfelder & Rui Luo & Michael C Oldham & Steve Horvath, 2011. "Is My Network Module Preserved and Reproducible?," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-29, January.
    14. Shanghong Xie & Xiang Li & Peter McColgan & Rachael I. Scahill & Donglin Zeng & Yuanjia Wang, 2020. "Identifying disease‐associated biomarker network features through conditional graphical model," Biometrics, The International Biometric Society, vol. 76(3), pages 995-1006, September.
    15. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    16. Elva María Novoa-del-Toro & Efrén Mezura-Montes & Matthieu Vignes & Morgane Térézol & Frédérique Magdinier & Laurent Tichit & Anaïs Baudot, 2021. "A multi-objective genetic algorithm to find active modules in multiplex biological networks," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-24, August.
    17. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    18. Bar, Haim & Wells, Martin T., 2023. "On graphical models and convex geometry," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    19. Luo, Shan & Chen, Zehua, 2014. "Edge detection in sparse Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 138-152.
    20. Jie Xiong & Tong Zhou, 2012. "Gene Regulatory Network Inference from Multifactorial Perturbation Data Using both Regression and Correlation Analyses," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.