IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0014147.html
   My bibliography  Save this article

Gene Regulatory Networks from Multifactorial Perturbations Using Graphical Lasso: Application to the DREAM4 Challenge

Author

Listed:
  • Patricia Menéndez
  • Yiannis A I Kourmpetis
  • Cajo J F ter Braak
  • Fred A van Eeuwijk

Abstract

A major challenge in the field of systems biology consists of predicting gene regulatory networks based on different training data. Within the DREAM4 initiative, we took part in the multifactorial sub-challenge that aimed to predict gene regulatory networks of size 100 from training data consisting of steady-state levels obtained after applying multifactorial perturbations to the original in silico network.Due to the static character of the challenge data, we tackled the problem via a sparse Gaussian Markov Random Field, which relates network topology with the covariance inverse generated by the gene measurements. As for the computations, we used the Graphical Lasso algorithm which provided a large range of candidate network topologies. The main task was to select the optimal network topology and for that, different model selection criteria were explored. The selected networks were compared with the golden standards and the results ranked using the scoring metrics applied in the challenge, giving a better insight in our submission and the way to improve it.Our approach provides an easy statistical and computational framework to infer gene regulatory networks that is suitable for large networks, even if the number of the observations (perturbations) is greater than the number of variables (genes).

Suggested Citation

  • Patricia Menéndez & Yiannis A I Kourmpetis & Cajo J F ter Braak & Fred A van Eeuwijk, 2010. "Gene Regulatory Networks from Multifactorial Perturbations Using Graphical Lasso: Application to the DREAM4 Challenge," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0014147
    DOI: 10.1371/journal.pone.0014147
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014147
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0014147&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0014147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viswanadham Sridhara & Austin G Meyer & Piyush Rai & Jeffrey E Barrick & Pradeep Ravikumar & Daniel Segrè & Claus O Wilke, 2014. "Predicting Growth Conditions from Internal Metabolic Fluxes in an In-Silico Model of E. coli," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-22, December.
    2. Jie Xiong & Tong Zhou, 2012. "Gene Regulatory Network Inference from Multifactorial Perturbation Data Using both Regression and Correlation Analyses," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    3. Fei Liu & Shao-Wu Zhang & Wei-Feng Guo & Ze-Gang Wei & Luonan Chen, 2016. "Inference of Gene Regulatory Network Based on Local Bayesian Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.
    4. Evan J Molinelli & Anil Korkut & Weiqing Wang & Martin L Miller & Nicholas P Gauthier & Xiaohong Jing & Poorvi Kaushik & Qin He & Gordon Mills & David B Solit & Christine A Pratilas & Martin Weigt & A, 2013. "Perturbation Biology: Inferring Signaling Networks in Cellular Systems," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0014147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.