IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0074571.html
   My bibliography  Save this article

A Kalman-Filter Based Approach to Identification of Time-Varying Gene Regulatory Networks

Author

Listed:
  • Jie Xiong
  • Tong Zhou

Abstract

Motivation: Conventional identification methods for gene regulatory networks (GRNs) have overwhelmingly adopted static topology models, which remains unchanged over time to represent the underlying molecular interactions of a biological system. However, GRNs are dynamic in response to physiological and environmental changes. Although there is a rich literature in modeling static or temporally invariant networks, how to systematically recover these temporally changing networks remains a major and significant pressing challenge. The purpose of this study is to suggest a two-step strategy that recovers time-varying GRNs. Results: It is suggested in this paper to utilize a switching auto-regressive model to describe the dynamics of time-varying GRNs, and a two-step strategy is proposed to recover the structure of time-varying GRNs. In the first step, the change points are detected by a Kalman-filter based method. The observed time series are divided into several segments using these detection results; and each time series segment belonging to two successive demarcating change points is associated with an individual static regulatory network. In the second step, conditional network structure identification methods are used to reconstruct the topology for each time interval. This two-step strategy efficiently decouples the change point detection problem and the topology inference problem. Simulation results show that the proposed strategy can detect the change points precisely and recover each individual topology structure effectively. Moreover, computation results with the developmental data of Drosophila Melanogaster show that the proposed change point detection procedure is also able to work effectively in real world applications and the change point estimation accuracy exceeds other existing approaches, which means the suggested strategy may also be helpful in solving actual GRN reconstruction problem.

Suggested Citation

  • Jie Xiong & Tong Zhou, 2013. "A Kalman-Filter Based Approach to Identification of Time-Varying Gene Regulatory Networks," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-8, October.
  • Handle: RePEc:plo:pone00:0074571
    DOI: 10.1371/journal.pone.0074571
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074571
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0074571&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0074571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Xiong & Tong Zhou, 2012. "Gene Regulatory Network Inference from Multifactorial Perturbation Data Using both Regression and Correlation Analyses," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    2. Nicholas M. Luscombe & M. Madan Babu & Haiyuan Yu & Michael Snyder & Sarah A. Teichmann & Mark Gerstein, 2004. "Genomic analysis of regulatory network dynamics reveals large topological changes," Nature, Nature, vol. 431(7006), pages 308-312, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    2. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.
    3. Jeremiah J Faith & Boris Hayete & Joshua T Thaden & Ilaria Mogno & Jamey Wierzbowski & Guillaume Cottarel & Simon Kasif & James J Collins & Timothy S Gardner, 2007. "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-13, January.
    4. Tuomo Mäki-Marttunen & Juha Kesseli & Matti Nykter, 2013. "Balance between Noise and Information Flow Maximizes Set Complexity of Network Dynamics," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    5. Manikandan Narayanan & Adrian Vetta & Eric E Schadt & Jun Zhu, 2010. "Simultaneous Clustering of Multiple Gene Expression and Physical Interaction Datasets," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-13, April.
    6. Liu, Suling & Xu, Qiong & Chen, Aimin & Wang, Pei, 2020. "Structural controllability of dynamic transcriptional regulatory networks for Saccharomyces cerevisiae," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Zhen Yang & Yen‐Yi Ho, 2022. "Modeling dynamic correlation in zero‐inflated bivariate count data with applications to single‐cell RNA sequencing data," Biometrics, The International Biometric Society, vol. 78(2), pages 766-776, June.
    8. Xiaoke Ma & Long Gao & Georgios Karamanlidis & Peng Gao & Chi Fung Lee & Lorena Garcia-Menendez & Rong Tian & Kai Tan, 2015. "Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0074571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.