IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0043301.html
   My bibliography  Save this article

Identifying the Genetic Variation of Gene Expression Using Gene Sets: Application of Novel Gene Set eQTL Approach to PharmGKB and KEGG

Author

Listed:
  • Ryan Abo
  • Gregory D Jenkins
  • Liewei Wang
  • Brooke L Fridley

Abstract

Genetic variation underlying the regulation of mRNA gene expression in humans may provide key insights into the molecular mechanisms of human traits and complex diseases. Current statistical methods to map genetic variation associated with mRNA gene expression have typically applied standard linkage and/or association methods; however, when genome-wide SNP and mRNA expression data are available performing all pair wise comparisons is computationally burdensome and may not provide optimal power to detect associations. Consideration of different approaches to account for the high dimensionality and multiple testing issues may provide increased efficiency and statistical power. Here we present a novel approach to model and test the association between genetic variation and mRNA gene expression levels in the context of gene sets (GSs) and pathways, referred to as gene set – expression quantitative trait loci analysis (GS-eQTL). The method uses GSs to initially group SNPs and mRNA expression, followed by the application of principal components analysis (PCA) to collapse the variation and reduce the dimensionality within the GSs. We applied GS-eQTL to assess the association between SNP and mRNA expression level data collected from a cell-based model system using PharmGKB and KEGG defined GSs. We observed a large number of significant GS-eQTL associations, in which the most significant associations arose between genetic variation and mRNA expression from the same GS. However, a number of associations involving genetic variation and mRNA expression from different GSs were also identified. Our proposed GS-eQTL method effectively addresses the multiple testing limitations in eQTL studies and provides biological context for SNP-expression associations.

Suggested Citation

  • Ryan Abo & Gregory D Jenkins & Liewei Wang & Brooke L Fridley, 2012. "Identifying the Genetic Variation of Gene Expression Using Gene Sets: Application of Novel Gene Set eQTL Approach to PharmGKB and KEGG," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-11, August.
  • Handle: RePEc:plo:pone00:0043301
    DOI: 10.1371/journal.pone.0043301
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043301
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043301&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0043301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vivian G. Cheung & Richard S. Spielman & Kathryn G. Ewens & Teresa M. Weber & Michael Morley & Joshua T. Burdick, 2005. "Mapping determinants of human gene expression by regional and genome-wide association," Nature, Nature, vol. 437(7063), pages 1365-1369, October.
    2. Miriam F. Moffatt & Michael Kabesch & Liming Liang & Anna L. Dixon & David Strachan & Simon Heath & Martin Depner & Andrea von Berg & Albrecht Bufe & Ernst Rietschel & Andrea Heinzmann & Burkard Simma, 2007. "Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma," Nature, Nature, vol. 448(7152), pages 470-473, July.
    3. Zhijin Wu & Rafael Irizarry & Robert Gentleman & Francisco Martinez Murillo & Forrest Spencer, 2004. "A Model Based Background Adjustment for Oligonucleotide Expression Arrays," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1001, Berkeley Electronic Press.
    4. Zhijin Wu & Rafael A. Irizarry & Robert Gentleman & Francisco Martinez-Murillo & Forrest Spencer, 2004. "A Model-Based Background Adjustment for Oligonucleotide Expression Arrays," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 909-917, December.
    5. Michael Morley & Cliona M. Molony & Teresa M. Weber & James L. Devlin & Kathryn G. Ewens & Richard S. Spielman & Vivian G. Cheung, 2004. "Genetic analysis of genome-wide variation in human gene expression," Nature, Nature, vol. 430(7001), pages 743-747, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Hyun Ju & Sushila A Shenoy & Ronald G Crystal & Jason G Mezey, 2017. "An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-26, May.
    2. Rinku Sharma & Garima Singh & Sudeepto Bhattacharya & Ashutosh Singh, 2018. "Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
    3. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    4. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.
    5. Yixin Fang & Yang Feng & Ming Yuan, 2014. "Regularized principal components of heritability," Computational Statistics, Springer, vol. 29(3), pages 455-465, June.
    6. Sigrun Helga Lund & Daniel Fannar Gudbjartsson & Thorunn Rafnar & Asgeir Sigurdsson & Sigurjon Axel Gudjonsson & Julius Gudmundsson & Kari Stefansson & Gunnar Stefansson, 2014. "A Method for Detecting Long Non-Coding RNAs with Tiled RNA Expression Microarrays," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    7. Krishanpal Anamika & Àkos Gyenis & Laetitia Poidevin & Olivier Poch & Làszlò Tora, 2012. "RNA Polymerase II Pausing Downstream of Core Histone Genes Is Different from Genes Producing Polyadenylated Transcripts," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    8. Lei Zhang & Linlin Wang & Pu Tian & Suyan Tian, 2016. "Identification of Genes Discriminating Multiple Sclerosis Patients from Controls by Adapting a Pathway Analysis Method," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    9. Barbara E Stranger & Stephen B Montgomery & Antigone S Dimas & Leopold Parts & Oliver Stegle & Catherine E Ingle & Magda Sekowska & George Davey Smith & David Evans & Maria Gutierrez-Arcelus & Alkes P, 2012. "Patterns of Cis Regulatory Variation in Diverse Human Populations," PLOS Genetics, Public Library of Science, vol. 8(4), pages 1-13, April.
    10. Upton Graham J. G. & Harrison Andrew P, 2010. "The Detection of Blur in Affymetrix GeneChips," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-19, October.
    11. Jeremiah J Faith & Boris Hayete & Joshua T Thaden & Ilaria Mogno & Jamey Wierzbowski & Guillaume Cottarel & Simon Kasif & James J Collins & Timothy S Gardner, 2007. "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-13, January.
    12. Chalise, Prabhakar & Fridley, Brooke L., 2012. "Comparison of penalty functions for sparse canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 245-254.
    13. Ning Jiang & Minghui Wang & Tianye Jia & Lin Wang & Lindsey Leach & Christine Hackett & David Marshall & Zewei Luo, 2011. "A Robust Statistical Method for Association-Based eQTL Analysis," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    14. Paul C Boutros & Ivy D Moffat & Allan B Okey & Raimo Pohjanvirta, 2011. "mRNA Levels in Control Rat Liver Display Strain-Specific, Hereditary, and AHR-Dependent Components," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-15, July.
    15. Marot Guillemette & Mayer Claus-Dieter, 2009. "Sequential Analysis for Microarray Data Based on Sensitivity and Meta-Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-35, January.
    16. Wei-Chung Cheng & Cheng-Wei Chang & Chaang-Ray Chen & Min-Lung Tsai & Wun-Yi Shu & Chia-Yang Li & Ian C Hsu, 2011. "Identification of Reference Genes across Physiological States for qRT-PCR through Microarray Meta-Analysis," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-8, February.
    17. Parker Hilary S. & Leek Jeffrey T., 2012. "The practical effect of batch on genomic prediction," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-22, April.
    18. Suyan Tian & James G Krueger & Katherine Li & Ali Jabbari & Carrie Brodmerkel & Michelle A Lowes & Mayte Suárez-Fariñas, 2012. "Meta-Analysis Derived (MAD) Transcriptome of Psoriasis Defines the “Core” Pathogenesis of Disease," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-15, September.
    19. Hui-Min Wang & Ching-Lin Hsiao & Ai-Ru Hsieh & Ying-Chao Lin & Cathy S J Fann, 2012. "Constructing Endophenotypes of Complex Diseases Using Non-Negative Matrix Factorization and Adjusted Rand Index," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    20. Akul Singhania & Hitasha Rupani & Nivenka Jayasekera & Simon Lumb & Paul Hales & Neil Gozzard & Donna E Davies & Christopher H Woelk & Peter H Howarth, 2017. "Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0043301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.