IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i2p245-254.html
   My bibliography  Save this article

Comparison of penalty functions for sparse canonical correlation analysis

Author

Listed:
  • Chalise, Prabhakar
  • Fridley, Brooke L.

Abstract

Canonical correlation analysis (CCA) is a widely used multivariate method for assessing the association between two sets of variables. However, when the number of variables far exceeds the number of subjects, such in the case of large-scale genomic studies, the traditional CCA method is not appropriate. In addition, when the variables are highly correlated, the sample covariance matrices become unstable or undefined. To overcome these two issues, sparse canonical correlation analysis (SCCA) for multiple data sets has been proposed using a Lasso type of penalty. However, these methods do not have direct control over the sparsity of the solution. An additional step that uses a Bayesian Information Criterion (BIC) has also been suggested to further filter out unimportant features. In this paper, a comparison of four penalty functions (Lasso, Elastic-net, smoothly clipped absolute deviation (SCAD), and Hard-threshold) for SCCA with and without the BIC filtering step have been carried out using both real and simulated genotypic and mRNA expression data. This study indicates that the SCAD penalty with a BIC filter would be a preferable penalty function for application of SCCA to genomic data.

Suggested Citation

  • Chalise, Prabhakar & Fridley, Brooke L., 2012. "Comparison of penalty functions for sparse canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 245-254.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:245-254
    DOI: 10.1016/j.csda.2011.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002660
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parkhomenko Elena & Tritchler David & Beyene Joseph, 2009. "Sparse Canonical Correlation Analysis with Application to Genomic Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-36, January.
    2. Zhijin Wu & Rafael Irizarry & Robert Gentleman & Francisco Martinez Murillo & Forrest Spencer, 2004. "A Model Based Background Adjustment for Oligonucleotide Expression Arrays," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1001, Berkeley Electronic Press.
    3. Zhijin Wu & Rafael A. Irizarry & Robert Gentleman & Francisco Martinez-Murillo & Forrest Spencer, 2004. "A Model-Based Background Adjustment for Oligonucleotide Expression Arrays," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 909-917, December.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Witten Daniela M & Tibshirani Robert J., 2009. "Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-29, June.
    6. Waaijenborg Sandra & Verselewel de Witt Hamer Philip C. & Zwinderman Aeilko H, 2008. "Quantifying the Association between Gene Expressions and DNA-Markers by Penalized Canonical Correlation Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-29, January.
    7. Vinod, H. D., 1976. "Canonical ridge and econometrics of joint production," Journal of Econometrics, Elsevier, vol. 4(2), pages 147-166, May.
    8. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
    9. Jianqing Fan, 1997. "Comments on «Wavelets in statistics: A review» by A. Antoniadis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 131-138, August.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Jafarpour & Gareth Barnes & Lluis Fuentemilla & Emrah Duzel & Will D Penny, 2013. "Population Level Inference for Multivariate MEG Analysis," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    2. Sandra E. Safo & Shuzhao Li & Qi Long, 2018. "Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information," Biometrics, The International Biometric Society, vol. 74(1), pages 300-312, March.
    3. Szefer Elena & Lu Donghuan & Nathoo Farouk & Beg Mirza Faisal & Graham Jinko, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 367-386, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lykou, Anastasia & Whittaker, Joe, 2010. "Sparse CCA using a Lasso with positivity constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3144-3157, December.
    2. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    3. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2018. "Variable Selection in Causal Inference using a Simultaneous Penalization Method," Journal of Causal Inference, De Gruyter, vol. 6(1), pages 1-16, March.
    4. Benjamin Poignard, 2020. "Asymptotic theory of the adaptive Sparse Group Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 297-328, February.
    5. Lee, Youngjo & Oh, Hee-Seok, 2014. "A new sparse variable selection via random-effect model," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 89-99.
    6. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    7. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    8. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    9. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    10. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    11. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    12. Szefer Elena & Lu Donghuan & Nathoo Farouk & Beg Mirza Faisal & Graham Jinko, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 367-386, December.
    13. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    14. Wang, Wenjia & Zhou, Yi-Hui, 2021. "Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    15. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    17. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Papers 2404.03968, arXiv.org.
    18. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    19. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    20. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:245-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.