IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0036026.html
   My bibliography  Save this article

Understanding Disease Control: Influence of Epidemiological and Economic Factors

Author

Listed:
  • Katarzyna Oleś
  • Ewa Gudowska-Nowak
  • Adam Kleczkowski

Abstract

We present a model of disease transmission on a regular and small world network and compare different control options. Comparison is based on a total cost of epidemic, including cost of palliative treatment of ill individuals and preventive cost aimed at vaccination or culling of susceptible individuals. Disease is characterized by pre-symptomatic phase, which makes detection and control difficult. Three general strategies emerge: global preventive treatment, local treatment within a neighborhood of certain size and only palliative treatment with no prevention. While the choice between the strategies depends on a relative cost of palliative and preventive treatment, the details of the local strategy and, in particular, the size of the optimal treatment neighborhood depend on the epidemiological factors. The required extent of prevention is proportional to the size of the infection neighborhood, but depends on time till detection and time till treatment in a non-nonlinear (power) law. The optimal size of control neighborhood is also highly sensitive to the relative cost, particularly for inefficient detection and control application. These results have important consequences for design of prevention strategies aiming at emerging diseases for which parameters are not nessecerly known in advance.

Suggested Citation

  • Katarzyna Oleś & Ewa Gudowska-Nowak & Adam Kleczkowski, 2012. "Understanding Disease Control: Influence of Epidemiological and Economic Factors," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0036026
    DOI: 10.1371/journal.pone.0036026
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036026
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0036026&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0036026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Klein, Eili & Laxminarayan, Ramanan & Smith, David L. & Gilligan, Christopher A., 2007. "Economic incentives and mathematical models of disease," Environment and Development Economics, Cambridge University Press, vol. 12(5), pages 707-732, October.
    2. Mark Gersovitz & Jeffrey S. Hammer, 2004. "The Economical Control of Infectious Diseases," Economic Journal, Royal Economic Society, vol. 114(492), pages 1-27, January.
    3. Scott Barrett, 2003. "Global Disease Eradication," Journal of the European Economic Association, MIT Press, vol. 1(2-3), pages 591-600, 04/05.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    2. Davide La Torre & Danilo Liuzzi & Simone Marsiglio, 2022. "Geographical heterogeneities and externalities in an epidemiological‐macroeconomic framework," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 24(5), pages 1154-1181, October.
    3. Toxvaerd, Flavio, 2010. "Recurrent Infection and Externalities in Prevention," CEPR Discussion Papers 8112, C.E.P.R. Discussion Papers.
    4. Barrett, Scott & Hoel, Michael, 2007. "Optimal disease eradication," Environment and Development Economics, Cambridge University Press, vol. 12(5), pages 627-652, October.
    5. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2017. "Private eradication of mobile public bads," European Economic Review, Elsevier, vol. 94(C), pages 23-44.
    6. Toxvaerd, F. & Rowthorn, R., 2020. "On the Management of Population Immunity," Cambridge Working Papers in Economics 2080, Faculty of Economics, University of Cambridge.
    7. Stéphane Mechoulan, 2007. "Market structure and communicable diseases," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(2), pages 468-492, May.
    8. La Torre, Davide & Malik, Tufail & Marsiglio, Simone, 2020. "Optimal control of prevention and treatment in a basic macroeconomic–epidemiological model," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 100-108.
    9. Martin F. Quaas & Jasper N. Meya & Hanna Schenk & Björn Bos & Moritz A. Drupp & Till Requate, 2020. "The Social Cost of Contacts: Theory and Evidence for the Covid-19 Pandemic in Germany," CESifo Working Paper Series 8347, CESifo.
    10. M. Ceddia, 2012. "Optimal Disease Eradication in Sympatric Metapopulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 499-530, August.
    11. Sabine Liebenehm & Bernard Bett & Cristobal Verdugo & Mohamed Said, 2016. "Optimal Drug Control under Risk of Drug Resistance – The Case of African Animal Trypanosomosis," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(2), pages 510-533, June.
    12. Toxvaerd, Flavio & Rowthorn, Robert, 2022. "On the management of population immunity," Journal of Economic Theory, Elsevier, vol. 204(C).
    13. Rowthorn, Robert & Toxvaerd, Flavio, 2012. "The Optimal Control of Infectious Diseases via Prevention and Treatment," CEPR Discussion Papers 8925, C.E.P.R. Discussion Papers.
    14. Rabah Amir & Raouf Boucekkine, 2022. "Introduction to the special issue on new insights into economic epidemiology: Theory and policy," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 24(5), pages 861-872, October.
    15. Telalagic, S., 2012. "Optimal Treatment of an SIS Disease with Two Strains," Cambridge Working Papers in Economics 1229, Faculty of Economics, University of Cambridge.
    16. Sims, Charles & Finnoff, David & O’Regan, Suzanne M., 2016. "Public control of rational and unpredictable epidemics," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 161-176.
    17. Martin F Quaas & Jasper N Meya & Hanna Schenk & Björn Bos & Moritz A Drupp & Till Requate, 2021. "The social cost of contacts: Theory and evidence for the first wave of the COVID-19 pandemic in Germany," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-29, March.
    18. Anne-France Viet & Stéphane Krebs & Olivier Rat-Aspert & Laurent Jeanpierre & Catherine Belloc & Pauline Ezanno, 2018. "A modelling framework based on MDP to coordinate farmers' disease control decisions at a regional scale," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-20, June.
    19. Andrea Galeotti & Brian W. Rogers, 2013. "Strategic Immunization and Group Structure," American Economic Journal: Microeconomics, American Economic Association, vol. 5(2), pages 1-32, May.
    20. Emmanuel Njeuhmeli & Melissa Schnure & Andrea Vazzano & Elizabeth Gold & Peter Stegman & Katharine Kripke & Michel Tchuenche & Lori Bollinger & Steven Forsythe & Catherine Hankins, 2019. "Using mathematical modeling to inform health policy: A case study from voluntary medical male circumcision scale-up in eastern and southern Africa and proposed framework for success," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0036026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.