IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0032467.html
   My bibliography  Save this article

Modelling the Regulation of Thermal Adaptation in Candida albicans, a Major Fungal Pathogen of Humans

Author

Listed:
  • Michelle D Leach
  • Katarzyna M Tyc
  • Alistair J P Brown
  • Edda Klipp

Abstract

Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.

Suggested Citation

  • Michelle D Leach & Katarzyna M Tyc & Alistair J P Brown & Edda Klipp, 2012. "Modelling the Regulation of Thermal Adaptation in Candida albicans, a Major Fungal Pathogen of Humans," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
  • Handle: RePEc:plo:pone00:0032467
    DOI: 10.1371/journal.pone.0032467
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032467
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0032467&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0032467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sina Ghaemmaghami & Won-Ki Huh & Kiowa Bower & Russell W. Howson & Archana Belle & Noah Dephoure & Erin K. O'Shea & Jonathan S. Weissman, 2003. "Global analysis of protein expression in yeast," Nature, Nature, vol. 425(6959), pages 737-741, October.
    2. N. Barkai & S. Leibler, 1997. "Robustness in simple biochemical networks," Nature, Nature, vol. 387(6636), pages 913-917, June.
    3. Alfred L. Goldberg, 2003. "Protein degradation and protection against misfolded or damaged proteins," Nature, Nature, vol. 426(6968), pages 895-899, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Önder Kartal & Oliver Ebenhöh, 2009. "Ground State Robustness as an Evolutionary Design Principle in Signaling Networks," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-8, December.
    2. Silke Neumann & Linda Løvdok & Kajetan Bentele & Johannes Meisig & Ekkehard Ullner & Ferencz S Paldy & Victor Sourjik & Markus Kollmann, 2014. "Exponential Signaling Gain at the Receptor Level Enhances Signal-to-Noise Ratio in Bacterial Chemotaxis," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    3. Jae Kyoung Kim & Eduardo D Sontag, 2017. "Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    4. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    5. Jae Kyoung Kim & Trachette L Jackson, 2013. "Mechanisms That Enhance Sustainability of p53 Pulses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    6. Junjie Luo & Jun Wang & Ting Martin Ma & Zhirong Sun, 2010. "Reverse Engineering of Bacterial Chemotaxis Pathway via Frequency Domain Analysis," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    7. Jinlong Yuan & Lei Wang & Xu Zhang & Enmin Feng & Hongchao Yin & Zhilong Xiu, 2015. "Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays," Journal of Global Optimization, Springer, vol. 62(4), pages 791-810, August.
    8. Anneke Brümmer & Carlos Salazar & Vittoria Zinzalla & Lilia Alberghina & Thomas Höfer, 2010. "Mathematical Modelling of DNA Replication Reveals a Trade-off between Coherence of Origin Activation and Robustness against Rereplication," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-13, May.
    9. Miri Adler & Avi Mayo & Uri Alon, 2014. "Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-14, August.
    10. Emma Pierson & the GTEx Consortium & Daphne Koller & Alexis Battle & Sara Mostafavi, 2015. "Sharing and Specificity of Co-expression Networks across 35 Human Tissues," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-19, May.
    11. Jiangan Xie & Zhiling Xu & Shangbo Zhou & Xianchao Pan & Shaoxi Cai & Li Yang & Hu Mei, 2013. "The VHSE-Based Prediction of Proteasomal Cleavage Sites," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    12. Michael D Barton & Daniela Delneri & Stephen G Oliver & Magnus Rattray & Casey M Bergman, 2010. "Evolutionary Systems Biology of Amino Acid Biosynthetic Cost in Yeast," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-13, August.
    13. David A Sivak & Matt Thomson, 2014. "Environmental Statistics and Optimal Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-12, September.
    14. Zhdanov, Vladimir P., 2011. "Periodic perturbation of the bistable kinetics of gene expression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 57-64.
    15. Deyan Luan & Michael Zai & Jeffrey D Varner, 2007. "Computationally Derived Points of Fragility of a Human Cascade Are Consistent with Current Therapeutic Strategies," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-13, July.
    16. Shinsuke Ohnuki & Yoshikazu Ohya, 2018. "High-dimensional single-cell phenotyping reveals extensive haploinsufficiency," PLOS Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    17. Jasmin Fisher & Nir Piterman & Alex Hajnal & Thomas A Henzinger, 2007. "Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-12, May.
    18. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    19. Maja Bialecka-Fornal & Heun Jin Lee & Hannah A DeBerg & Chris S Gandhi & Rob Phillips, 2012. "Single-Cell Census of Mechanosensitive Channels in Living Bacteria," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-13, March.
    20. Brian J. Caldwell & Andrew S. Norris & Caroline F. Karbowski & Alyssa M. Wiegand & Vicki H. Wysocki & Charles E. Bell, 2022. "Structure of a RecT/Redβ family recombinase in complex with a duplex intermediate of DNA annealing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0032467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.