IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0028812.html
   My bibliography  Save this article

Modeling the Influence of Local Environmental Factors on Malaria Transmission in Benin and Its Implications for Cohort Study

Author

Listed:
  • Gilles Cottrell
  • Bienvenue Kouwaye
  • Charlotte Pierrat
  • Agnès le Port
  • Aziz Bouraïma
  • Noël Fonton
  • Mahouton Norbert Hounkonnou
  • Achille Massougbodji
  • Vincent Corbel
  • André Garcia

Abstract

Malaria remains endemic in tropical areas, especially in Africa. For the evaluation of new tools and to further our understanding of host-parasite interactions, knowing the environmental risk of transmission—even at a very local scale—is essential. The aim of this study was to assess how malaria transmission is influenced and can be predicted by local climatic and environmental factors. As the entomological part of a cohort study of 650 newborn babies in nine villages in the Tori Bossito district of Southern Benin between June 2007 and February 2010, human landing catches were performed to assess the density of malaria vectors and transmission intensity. Climatic factors as well as household characteristics were recorded throughout the study. Statistical correlations between Anopheles density and environmental and climatic factors were tested using a three-level Poisson mixed regression model. The results showed both temporal variations in vector density (related to season and rainfall), and spatial variations at the level of both village and house. These spatial variations could be largely explained by factors associated with the house's immediate surroundings, namely soil type, vegetation index and the proximity of a watercourse. Based on these results, a predictive regression model was developed using a leave-one-out method, to predict the spatiotemporal variability of malaria transmission in the nine villages. This study points up the importance of local environmental factors in malaria transmission and describes a model to predict the transmission risk of individual children, based on environmental and behavioral characteristics.

Suggested Citation

  • Gilles Cottrell & Bienvenue Kouwaye & Charlotte Pierrat & Agnès le Port & Aziz Bouraïma & Noël Fonton & Mahouton Norbert Hounkonnou & Achille Massougbodji & Vincent Corbel & André Garcia, 2012. "Modeling the Influence of Local Environmental Factors on Malaria Transmission in Benin and Its Implications for Cohort Study," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
  • Handle: RePEc:plo:pone00:0028812
    DOI: 10.1371/journal.pone.0028812
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028812
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0028812&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0028812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. L. Smith & J. Dushoff & R. W. Snow & S. I. Hay, 2005. "The entomological inoculation rate and Plasmodium falciparum infection in African children," Nature, Nature, vol. 438(7067), pages 492-495, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bienvenue Kouwaye & Fabrice Rossi & Noël Fonton & André Garcia & Simplice Dossou-Gbété & Mahouton Norbert Hounkonnou & Gilles Cottrell, 2017. "Predicting local malaria exposure using a Lasso-based two-level cross validation algorithm," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anderson, Soren T. & Laxminarayan, Ramanan & Salant, Stephen W., 2012. "Diversify or focus? Spending to combat infectious diseases when budgets are tight," Journal of Health Economics, Elsevier, vol. 31(4), pages 658-675.
    2. Edmund I. Yamba & Adrian M. Tompkins & Andreas H. Fink & Volker Ermert & Mbouna D. Amelie & Leonard K. Amekudzi & Olivier J. T. Briët, 2020. "Monthly Entomological Inoculation Rate Data for Studying the Seasonality of Malaria Transmission in Africa," Data, MDPI, vol. 5(2), pages 1-17, March.
    3. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    4. T Alex Perkins & Thomas W Scott & Arnaud Le Menach & David L Smith, 2013. "Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-16, December.
    5. Peter W Gething & Anand P Patil & Simon I Hay, 2010. "Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-12, April.
    6. S.B Assi & M-C Henry & C Rogier & J Dossou-Yovo & Martine Audibert & Jacky Mathonnat & T Teuscher & P Carnevale, 2013. "Inland valley rice production systems and malaria infection and disease in the forest region of western Côte d'Ivoire," Post-Print halshs-00861288, HAL.
    7. Fredros O Okumu & Nicodem J Govella & Sarah J Moore & Nakul Chitnis & Gerry F Killeen, 2010. "Potential Benefits, Limitations and Target Product-Profiles of Odor-Baited Mosquito Traps for Malaria Control in Africa," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-18, July.
    8. Klein, Matthew J. & Barham, Bradford L. & Wu, Yuexuan, 2019. "Gender Equality in the Family Can Reduce the Malaria Burden in Malawi," Staff Paper Series 594, University of Wisconsin, Agricultural and Applied Economics.
    9. Bree Cummins & Ricardo Cortez & Ivo M Foppa & Justin Walbeck & James M Hyman, 2012. "A Spatial Model of Mosquito Host-Seeking Behavior," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-13, May.
    10. Amal B Nourein & Mohammed A Abass & Abdel Hameed D Nugud & Ibrahim El Hassan & Robert W Snow & Abdisalan M Noor, 2011. "Identifying Residual Foci of Plasmodium falciparum Infections for Malaria Elimination: The Urban Context of Khartoum, Sudan," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-8, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0028812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.