IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0025225.html
   My bibliography  Save this article

Exploring the Fundamental Dynamics of Error-Based Motor Learning Using a Stationary Predictive-Saccade Task

Author

Listed:
  • Aaron L Wong
  • Mark Shelhamer

Abstract

The maintenance of movement accuracy uses prior performance errors to correct future motor plans; this motor-learning process ensures that movements remain quick and accurate. The control of predictive saccades, in which anticipatory movements are made to future targets before visual stimulus information becomes available, serves as an ideal paradigm to analyze how the motor system utilizes prior errors to drive movements to a desired goal. Predictive saccades constitute a stationary process (the mean and to a rough approximation the variability of the data do not vary over time, unlike a typical motor adaptation paradigm). This enables us to study inter-trial correlations, both on a trial-by-trial basis and across long blocks of trials. Saccade errors are found to be corrected on a trial-by-trial basis in a direction-specific manner (the next saccade made in the same direction will reflect a correction for errors made on the current saccade). Additionally, there is evidence for a second, modulating process that exhibits long memory. That is, performance information, as measured via inter-trial correlations, is strongly retained across a large number of saccades (about 100 trials). Together, this evidence indicates that the dynamics of motor learning exhibit complexities that must be carefully considered, as they cannot be fully described with current state-space (ARMA) modeling efforts.

Suggested Citation

  • Aaron L Wong & Mark Shelhamer, 2011. "Exploring the Fundamental Dynamics of Error-Based Motor Learning Using a Stationary Predictive-Saccade Task," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-13, September.
  • Handle: RePEc:plo:pone00:0025225
    DOI: 10.1371/journal.pone.0025225
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025225
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0025225&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0025225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    2. Jordan A Taylor & Kurt A Thoroughman, 2008. "Motor Adaptation Scaled by the Difficulty of a Secondary Cognitive Task," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-11, June.
    3. Maurice A Smith & Ali Ghazizadeh & Reza Shadmehr, 2006. "Interacting Adaptive Processes with Different Timescales Underlie Short-Term Motor Learning," PLOS Biology, Public Library of Science, vol. 4(6), pages 1-1, May.
    4. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    5. Ooms, M. & Doornik, J.A., 1999. "Inference and Forecasting for Fractional Autoregressive Integrated Moving Average Models, with an application to US and UK inflation," Econometric Institute Research Papers EI 9947/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Dubois & Sandrine Lardic & Valérie Mignon, 2004. "The Exact Maximum Likelihood-Based Test for Fractional Cointegration: Critical Values, Power and Size," Computational Economics, Springer;Society for Computational Economics, vol. 24(3), pages 239-255, July.
    2. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
    4. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    5. Emma Iglesias & Garry Phillips, 2005. "Analysing one-month Euro-market interest rates by fractionally integrated models," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 95-106.
    6. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    7. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    8. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    9. Valerie Mignon & Sandrine Lardic, 2004. "The exact maximum likelihood estimation of ARFIMA processes and model selection criteria: A Monte Carlo study," Economics Bulletin, AccessEcon, vol. 3(21), pages 1-16.
    10. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    11. Guglielmo Maria Caporale & Luis Alberiko Gil-Alana, 2024. "Persistence and long memory in monetary policy spreads," Applied Economics, Taylor & Francis Journals, vol. 56(20), pages 2422-2433, April.
    12. Ko, Kyungduk & Lee, Jaechoul & Lund, Robert, 2008. "Confidence intervals for long memory regressions," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1894-1902, September.
    13. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    14. Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
    15. Silva, E.M. & Franco, G.C. & Reisen, V.A. & Cruz, F.R.B., 2006. "Local bootstrap approaches for fractional differential parameter estimation in ARFIMA models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1002-1011, November.
    16. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    17. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    18. Alexander Ayertey Odonkor & Emmanuel Nkrumah Ababio & Emmanuel Amoah- Darkwah & Richard Andoh, 2022. "Stock Returns and Long-range Dependence," Global Business Review, International Management Institute, vol. 23(1), pages 37-47, February.
    19. Zevallos, Mauricio & Palma, Wilfredo, 2013. "Minimum distance estimation of ARFIMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 242-256.
    20. repec:ebl:ecbull:v:3:y:2004:i:21:p:1-16 is not listed on IDEAS
    21. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0025225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.