IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6984d10.1038_nature02447.html
   My bibliography  Save this article

Neural activity predicts individual differences in visual working memory capacity

Author

Listed:
  • Edward K. Vogel

    (University of Oregon)

  • Maro G. Machizawa

    (University of Oregon)

Abstract

Contrary to our rich phenomenological visual experience, our visual short-term memory system can maintain representations of only three to four objects at any given moment1,2. For over a century, the capacity of visual memory has been shown to vary substantially across individuals, ranging from 1.5 to about 5 objects3,4,5,6,7. Although numerous studies have recently begun to characterize the neural substrates of visual memory processes8,9,10,11,12, a neurophysiological index of storage capacity limitations has not yet been established. Here, we provide electrophysiological evidence for lateralized activity in humans that reflects the encoding and maintenance of items in visual memory. The amplitude of this activity is strongly modulated by the number of objects being held in the memory at the time, but approaches a limit asymptotically for arrays that meet or exceed storage capacity. Indeed, the precise limit is determined by each individual's memory capacity, such that the activity from low-capacity individuals reaches this plateau much sooner than that from high-capacity individuals. Consequently, this measure provides a strong neurophysiological predictor of an individual's capacity, allowing the demonstration of a direct relationship between neural activity and memory capacity.

Suggested Citation

  • Edward K. Vogel & Maro G. Machizawa, 2004. "Neural activity predicts individual differences in visual working memory capacity," Nature, Nature, vol. 428(6984), pages 748-751, April.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6984:d:10.1038_nature02447
    DOI: 10.1038/nature02447
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02447
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Francesca Tagliabue & Debora Brignani & Veronica Mazza, 2019. "Does numerical similarity alter age-related distractibility in working memory?," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
    2. Veronica Mazza & Alfonso Caramazza, 2012. "Perceptual Grouping and Visual Enumeration," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    3. Jifan Zhou & Jun Yin & Tong Chen & Xiaowei Ding & Zaifeng Gao & Mowei Shen, 2011. "Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-10, September.
    4. Shaiyan Keshvari & Ronald van den Berg & Wei Ji Ma, 2013. "No Evidence for an Item Limit in Change Detection," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-9, February.
    5. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2023. "Multinomial Logit Processes and Preference Discovery: Inside and Outside the Black Box," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(3), pages 1155-1194.
    6. Daniel Pacheco-Estefan & Marie-Christin Fellner & Lukas Kunz & Hui Zhang & Peter Reinacher & Charlotte Roy & Armin Brandt & Andreas Schulze-Bonhage & Linglin Yang & Shuang Wang & Jing Liu & Gui Xue & , 2024. "Maintenance and transformation of representational formats during working memory prioritization," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. S. Cerreia-Vioglio & F. Maccheroni & M. Marinacci & A. Rustichini, 2017. "Multinomial logit processes and preference discovery: inside and outside the black box," Working Papers 615, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    8. Roth, Volker & Richter, Kai, 2006. "How to fend off shoulder surfing," Journal of Banking & Finance, Elsevier, vol. 30(6), pages 1727-1751, June.
    9. Durk Talsma & Jonne J Sikkens & Jan Theeuwes, 2011. "Stay Tuned: What Is Special About Not Shifting Attention?," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-14, March.
    10. J David Timm & Frank Papenmeier, 2019. "Reorganization of spatial configurations in visual working memory: A matter of set size?," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    11. Mohammad Zia Ul Haq Katshu & Giovanni d'Avossa, 2014. "Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    12. Philipp Singer & Emilio Ferrara & Farshad Kooti & Markus Strohmaier & Kristina Lerman, 2016. "Evidence of Online Performance Deterioration in User Sessions on Reddit," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-16, August.
    13. Helen Abadzi, 2006. "Efficient Learning for the Poor : Insights from the Frontier of Cognitive Neuroscience," World Bank Publications - Books, The World Bank Group, number 7023.
    14. Pahor, Anja & JauĊĦovec, Norbert, 2017. "Multifaceted pattern of neural efficiency in working memory capacity," Intelligence, Elsevier, vol. 65(C), pages 23-34.
    15. Carlo Baldassi & Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Marco Pirazzini, 2020. "A Behavioral Characterization of the Drift Diffusion Model and Its Multialternative Extension for Choice Under Time Pressure," Management Science, INFORMS, vol. 66(11), pages 5075-5093, November.
    16. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci, 2020. "Multinomial logit processes and preference discovery: outside and inside the black box," Working Papers 663, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    17. Zaikin, Oleg & Kushtina, Emma & Rozewski, Przemyslaw, 2006. "Model and algorithm of the conceptual scheme formation for knowledge domain in distance learning," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1379-1399, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6984:d:10.1038_nature02447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.