IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43648-7.html
   My bibliography  Save this article

The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus

Author

Listed:
  • Erica W. Carter

    (University of Florida
    University of Florida)

  • Orlene Guerra Peraza

    (University of Florida)

  • Nian Wang

    (University of Florida
    University of Florida)

Abstract

The bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into their potential functions. We identify 4245 interactions between 542 proteins, after screening 916 bait and 936 prey proteins. The false positive rate of the Y2H assay is estimated to be 2.9%. Pull-down assays for nine protein-protein interactions (PPIs) likely involved in flagellar function support the robustness of the Y2H results. The average number of PPIs per node in the CLas interactome is 15.6, which is higher than the numbers previously reported for interactomes of free-living bacteria, suggesting that CLas genome reduction has been accompanied by increased protein multi-functionality. We propose potential functions for 171 uncharacterized proteins, based on the PPI results, guilt-by-association analyses, and comparison with data from other bacterial species. We identify 40 hub-node proteins, including quinone oxidoreductase and LysR, which are known to protect other bacteria against oxidative stress and might be important for CLas survival in the phloem. We expect our PPI database to facilitate research on CLas biology and pathogenicity mechanisms.

Suggested Citation

  • Erica W. Carter & Orlene Guerra Peraza & Nian Wang, 2023. "The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43648-7
    DOI: 10.1038/s41467-023-43648-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43648-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43648-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Soon Gang Choi & Julien Olivet & Patricia Cassonnet & Pierre-Olivier Vidalain & Katja Luck & Luke Lambourne & Kerstin Spirohn & Irma Lemmens & Mélanie Dos Santos & Caroline Demeret & Louis Jones & Sud, 2019. "Maximizing binary interactome mapping with a minimal number of assays," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Peter Uetz & Loic Giot & Gerard Cagney & Traci A. Mansfield & Richard S. Judson & James R. Knight & Daniel Lockshon & Vaibhav Narayan & Maithreyan Srinivasan & Pascale Pochart & Alia Qureshi-Emili & Y, 2000. "A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae," Nature, Nature, vol. 403(6770), pages 623-627, February.
    3. Stephen Oliver, 2000. "Guilt-by-association goes global," Nature, Nature, vol. 403(6770), pages 601-602, February.
    4. Jean-Christophe Rain & Luc Selig & Hilde De Reuse & Véronique Battaglia & Céline Reverdy & Stéphane Simon & Gerlinde Lenzen & Fabien Petel & Jérôme Wojcik & Vincent Schächter & Y. Chemama & Agnès Labi, 2001. "Erratum: The protein–protein interaction map of Helicobacter pylori," Nature, Nature, vol. 409(6821), pages 743-743, February.
    5. Jean-Christophe Rain & Luc Selig & Hilde De Reuse & Véronique Battaglia & Céline Reverdy & Stéphane Simon & Gerlinde Lenzen & Fabien Petel & Jérôme Wojcik & Vincent Schächter & Y. Chemama & Agnès Labi, 2001. "The protein–protein interaction map of Helicobacter pylori," Nature, Nature, vol. 409(6817), pages 211-215, January.
    6. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    7. Núria Crua Asensio & Elisabet Muñoz Giner & Natalia Sánchez de Groot & Marc Torrent Burgas, 2017. "Centrality in the host–pathogen interactome is associated with pathogen fitness during infection," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    8. Wenxiu Ma & Zhiqian Pang & Xiaoen Huang & Jin Xu & Sheo Shankar Pandey & Jinyun Li & Diann S. Achor & Fernanda N. C. Vasconcelos & Connor Hendrich & Yixiao Huang & Wenting Wang & Donghwan Lee & Daniel, 2022. "Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julian Petersen & Lukas Englmaier & Artem V. Artemov & Irina Poverennaya & Ruba Mahmoud & Thibault Bouderlique & Marketa Tesarova & Ruslan Deviatiiarov & Anett Szilvásy-Szabó & Evgeny E. Akkuratov & D, 2023. "A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Bingjie Hao & István A. Kovács, 2023. "A positive statistical benchmark to assess network agreement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Haley E. Adcox & Jason R. Hunt & Paige E. Allen & Thomas E. Siff & Kyle G. Rodino & Andrew K. Ottens & Jason A. Carlyon, 2024. "Orientia tsutsugamushi Ank5 promotes NLRC5 cytoplasmic retention and degradation to inhibit MHC class I expression," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Shihui Chen & Carolyn M. Phillips, 2024. "HRDE-2 drives small RNA specificity for the nuclear Argonaute protein HRDE-1," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Yubo Peng & Bofeng Zhang & Furong Chang, 2021. "Overlapping Community Detection of Bipartite Networks Based on a Novel Community Density," Future Internet, MDPI, vol. 13(4), pages 1-21, March.
    7. Hong-Wen Tang & Kerstin Spirohn & Yanhui Hu & Tong Hao & István A. Kovács & Yue Gao & Richard Binari & Donghui Yang-Zhou & Kenneth H. Wan & Joel S. Bader & Dawit Balcha & Wenting Bian & Benjamin W. Bo, 2023. "Next-generation large-scale binary protein interaction network for Drosophila melanogaster," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    9. Wilhelm, Thomas & Hollunder, Jens, 2007. "Information theoretic description of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 385-396.
    10. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    11. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    12. Gao, Jianbo & Hu, Jing, 2014. "Financial crisis, Omori's law, and negative entropy flow," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 79-86.
    13. Hua Yu & Jianxin Chen & Xue Xu & Yan Li & Huihui Zhao & Yupeng Fang & Xiuxiu Li & Wei Zhou & Wei Wang & Yonghua Wang, 2012. "A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-14, May.
    14. Tom C Freeman & Leon Goldovsky & Markus Brosch & Stijn van Dongen & Pierre Mazière & Russell J Grocock & Shiri Freilich & Janet Thornton & Anton J Enright, 2007. "Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-11, October.
    15. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    16. Chung-Yen Yu & Yung-Ting Chuang & Hsi-Peng Kuan, 2017. "Understanding Faculty Collaboration and Productivity: A Case Study," Asian Social Science, Canadian Center of Science and Education, vol. 13(3), pages 1-1, March.
    17. Christos Ellinas & Neil Allan & Anders Johansson, 2016. "Exploring Structural Patterns Across Evolved and Designed Systems: A Network Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 179-192, May.
    18. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    19. Dongmin Bang & Sangsoo Lim & Sangseon Lee & Sun Kim, 2023. "Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43648-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.