IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0022943.html
   My bibliography  Save this article

Ethnicity and Population Structure in Personal Naming Networks

Author

Listed:
  • Pablo Mateos
  • Paul A Longley
  • David O'Sullivan

Abstract

Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how ‘naming networks’, constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply ‘emerge’ from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new understandings of migration, identity, integration and social interaction across the world.

Suggested Citation

  • Pablo Mateos & Paul A Longley & David O'Sullivan, 2011. "Ethnicity and Population Structure in Personal Naming Networks," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-12, September.
  • Handle: RePEc:plo:pone00:0022943
    DOI: 10.1371/journal.pone.0022943
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022943
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0022943&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0022943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lambiotte, Renaud & Blondel, Vincent D. & de Kerchove, Cristobald & Huens, Etienne & Prieur, Christophe & Smoreda, Zbigniew & Van Dooren, Paul, 2008. "Geographical dispersal of mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5317-5325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yongbin & Li, Le & Wang, Yougui & Chen, Jiawei & Stanley, H. Eugene, 2019. "A study of Chinese regional hierarchical structure based on surnames," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 169-176.
    2. Lansley, Guy & Longley, Paul, 2016. "Deriving age and gender from forenames for consumer analytics," Journal of Retailing and Consumer Services, Elsevier, vol. 30(C), pages 271-278.
    3. Crescenzi, Riccardo & Nathan, Max & Rodríguez-Pose, Andrés, 2016. "Do inventors talk to strangers? On proximity and collaborative knowledge creation," Research Policy, Elsevier, vol. 45(1), pages 177-194.
    4. Kai On Wong & Osmar R Zaïane & Faith G Davis & Yutaka Yasui, 2020. "A machine learning approach to predict ethnicity using personal name and census location in Canada," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.
    5. Alberto Acerbi & Vasileios Lampos & Philip Garnett & R Alexander Bentley, 2013. "The Expression of Emotions in 20th Century Books," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-6, March.
    6. Stefano Breschi & Francesco Lissoni & Gianluca Tarasconi, 2014. "Inventor Data for Research on Migration and Innovation: A Survey and a Pilot," WIPO Economic Research Working Papers 17, World Intellectual Property Organization - Economics and Statistics Division.
    7. Paul A Longley & Muhammad Adnan & Guy Lansley, 2015. "The Geotemporal Demographics of Twitter Usage," Environment and Planning A, , vol. 47(2), pages 465-484, February.
    8. Neil Cummins, 2022. "The hidden wealth of English dynasties, 1892–2016," Economic History Review, Economic History Society, vol. 75(3), pages 667-702, August.
    9. Jung, Jay Heon & Kumar, Alok & Lim, Sonya S. & Yoo, Choong-Yuel, 2019. "An analyst by any other surname: Surname favorability and market reaction to analyst forecasts," Journal of Accounting and Economics, Elsevier, vol. 67(2), pages 306-335.
    10. Muhammad Adnan & Paul Longley, 2013. "Featured Graphic. Tweets by Different Ethnic Groups in Greater London," Environment and Planning A, , vol. 45(7), pages 1524-1527, July.
    11. Jens Kandt & Paul A Longley, 2018. "Ethnicity estimation using family naming practices," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Unchitta Kan & Jericho McLeod & Eduardo López, 2024. "Non-coresident family as a driver of migration change in a crisis: the case of the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    2. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    3. Adam, Arnaud & Finance, Olivier & Thomas, Isabelle, 2021. "Monitoring trucks to reveal Belgian geographical structures and dynamics: From GPS traces to spatial interactions," Journal of Transport Geography, Elsevier, vol. 91(C).
    4. Wu, Jieyu & Shao, Xinyu & Li, Jinhang & Huang, Gang, 2012. "Scale-free properties of information flux networks in genetic algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1692-1701.
    5. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
    6. David Laniado & Yana Volkovich & Salvatore Scellato & Cecilia Mascolo & Andreas Kaltenbrunner, 2018. "The Impact of Geographic Distance on Online Social Interactions," Information Systems Frontiers, Springer, vol. 20(6), pages 1203-1218, December.
    7. Christoph Stich & Emmanouil Tranos & Mirco Musolesi & Sune Lehmann, 2022. "The role of space, time and sociability in predicting social encounters," Environment and Planning B, , vol. 49(2), pages 619-636, February.
    8. Johannes Illenberger & Kai Nagel & Gunnar Flötteröd, 2013. "The Role of Spatial Interaction in Social Networks," Networks and Spatial Economics, Springer, vol. 13(3), pages 255-282, September.
    9. Christophe Sohn & Julien Licheron & Evert Meijers, 2022. "Border cities: Out of the shadow," Papers in Regional Science, Wiley Blackwell, vol. 101(2), pages 417-438, April.
    10. Fernando Peruani & Lionel Tabourier, 2011. "Directedness of Information Flow in Mobile Phone Communication Networks," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-9, December.
    11. Zhou, Bin & Xu, Xiao-Ting & Liu, Jian-Guo & Xu, Xiao-Ke & Wang, Nianxin, 2019. "Information interaction model for the mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1170-1176.
    12. Steenbruggen, John & Tranos, Emmanouil & Nijkamp, Peter, 2015. "Data from mobile phone operators: A tool for smarter cities?," Telecommunications Policy, Elsevier, vol. 39(3), pages 335-346.
    13. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    14. Gergő Tóth & Sándor Juhász & Zoltán Elekes & Balázs Lengyel, 2021. "Repeated collaboration of inventors across European regions," European Planning Studies, Taylor & Francis Journals, vol. 29(12), pages 2252-2272, December.
    15. Wang, Xi & Pei, Tao & Song, Ci & Chen, Jie & Shu, Hua & Liu, Yaxi & Guo, Sihui & Chen, Xiao, 2023. "How does socioeconomic status influence social relations? A perspective from mobile phone data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    16. Sascha Holzhauer & Friedrich Krebs & Andreas Ernst, 2013. "Considering baseline homophily when generating spatial social networks for agent-based modelling," Computational and Mathematical Organization Theory, Springer, vol. 19(2), pages 128-150, June.
    17. Meysam Alizadeh & Claudio Cioffi-Revilla & Andrew Crooks, 2017. "Generating and analyzing spatial social networks," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 362-390, September.
    18. György Csomós & Zsófia Viktória Vida & Balázs Lengyel, 2020. "Exploring the changing geographical pattern of international scientific collaborations through the prism of cities," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    19. Steenbruggen, John & Borzacchiello, Maria Teresa & Nijkamp, Peter & Scholten, Henk, 2013. "Data from telecommunication networks for incident management: An exploratory review on transport safety and security," Transport Policy, Elsevier, vol. 28(C), pages 86-102.
    20. Przemyslaw A Grabowicz & José J Ramasco & Bruno Gonçalves & Víctor M Eguíluz, 2014. "Entangling Mobility and Interactions in Social Media," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0022943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.