IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0022547.html
   My bibliography  Save this article

The Genetic Structure of the Swedish Population

Author

Listed:
  • Keith Humphreys
  • Alexander Grankvist
  • Monica Leu
  • Per Hall
  • Jianjun Liu
  • Samuli Ripatti
  • Karola Rehnström
  • Leif Groop
  • Lars Klareskog
  • Bo Ding
  • Henrik Grönberg
  • Jianfeng Xu
  • Nancy L Pedersen
  • Paul Lichtenstein
  • Morten Mattingsdal
  • Ole A Andreassen
  • Colm O'Dushlaine
  • Shaun M Purcell
  • Pamela Sklar
  • Patrick F Sullivan
  • Christina M Hultman
  • Juni Palmgren
  • Patrik K E Magnusson

Abstract

Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise Fst) indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS) with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to false conclusions.

Suggested Citation

  • Keith Humphreys & Alexander Grankvist & Monica Leu & Per Hall & Jianjun Liu & Samuli Ripatti & Karola Rehnström & Leif Groop & Lars Klareskog & Bo Ding & Henrik Grönberg & Jianfeng Xu & Nancy L Peders, 2011. "The Genetic Structure of the Swedish Population," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
  • Handle: RePEc:plo:pone00:0022547
    DOI: 10.1371/journal.pone.0022547
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022547
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0022547&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0022547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7219), pages 274-274, November.
    2. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7218), pages 98-101, November.
    3. Alkes L Price & Agnar Helgason & Snaebjorn Palsson & Hreinn Stefansson & David St. Clair & Ole A Andreassen & David Reich & Augustine Kong & Kari Stefansson, 2009. "The Impact of Divergence Time on the Nature of Population Structure: An Example from Iceland," PLOS Genetics, Public Library of Science, vol. 5(6), pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    2. Hellström, Jörgen & Stålnacke, Oscar & Olsson, Rickard, 2022. "Individuals’ financial risk-taking and peer influence," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Beatrix Eugster & Rafael Lalive & Andreas Steinhauer & Josef Zweimüller, 2011. "The Demand for Social Insurance: Does Culture Matter?," Economic Journal, Royal Economic Society, vol. 121(556), pages 413-448, November.
    3. Gad Abraham & Michael Inouye, 2014. "Fast Principal Component Analysis of Large-Scale Genome-Wide Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    4. Beatrix Brügger & Rafael Lalive & Josef Zweimüller, 2009. "Does Culture Affect Unemployment? Evidence from the Röstigraben," NRN working papers 2009-10, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
    5. Diana Chang & Alon Keinan, 2014. "Principal Component Analysis Characterizes Shared Pathogenetics from Genome-Wide Association Studies," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
    6. Alejandro Ochoa & John D Storey, 2021. "Estimating FST and kinship for arbitrary population structures," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-36, January.
    7. Feldman, Michael J., 2023. "Spiked singular values and vectors under extreme aspect ratios," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    8. Mateus H. Gouveia & Amy R. Bentley & Thiago P. Leal & Eduardo Tarazona-Santos & Carlos D. Bustamante & Adebowale A. Adeyemo & Charles N. Rotimi & Daniel Shriner, 2023. "Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Nicola Barban & Elisabetta De Cao & Sonia Oreffice & Climent Quintana-Domeque, 2016. "Assortative Mating on Education: A Genetic Assessment," Working Papers 2016-034, Human Capital and Economic Opportunity Working Group.
    10. Bryc, Katarzyna & Bryc, Wlodek & Silverstein, Jack W., 2013. "Separation of the largest eigenvalues in eigenanalysis of genotype data from discrete subpopulations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 34-43.
    11. Guang Guo & Yilan Fu & Hedwig Lee & Tianji Cai & Kathleen Mullan Harris & Yi Li, 2014. "Genetic Bio-Ancestry and Social Construction of Racial Classification in Social Surveys in the Contemporary United States," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 141-172, February.
    12. Forien, Raphaël & Ringbauer, Harald & Coop, Graham, 2024. "Demographic inference for spatially heterogeneous populations using long shared haplotypes," Theoretical Population Biology, Elsevier, vol. 159(C), pages 108-124.
    13. Panczak, Radoslaw & Moser, André & Held, Leonhard & Jones, Philip A. & Rühli, Frank J. & Staub, Kaspar, 2017. "A tall order: Small area mapping and modelling of adult height among Swiss male conscripts," Economics & Human Biology, Elsevier, vol. 26(C), pages 61-69.
    14. The International Multiple Sclerosis Genetics Consortium, 2011. "The Genetic Association of Variants in CD6, TNFRSF1A and IRF8 to Multiple Sclerosis: A Multicenter Case-Control Study," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-6, April.
    15. Xiaodong Liu & Ke Zhang & Neslihan A. Kaya & Zhe Jia & Dafei Wu & Tingting Chen & Zhiyuan Liu & Sinan Zhu & Axel M. Hillmer & Torsten Wuestefeld & Jin Liu & Yun Shen Chan & Zheng Hu & Liang Ma & Li Ji, 2024. "Tumor phylogeography reveals block-shaped spatial heterogeneity and the mode of evolution in Hepatocellular Carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Marie-Claude Babron & Marie de Tayrac & Douglas N Rutledge & Eleftheria Zeggini & Emmanuelle Génin, 2012. "Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    17. Priya Moorjani & Nick Patterson & Joel N Hirschhorn & Alon Keinan & Li Hao & Gil Atzmon & Edward Burns & Harry Ostrer & Alkes L Price & David Reich, 2011. "The History of African Gene Flow into Southern Europeans, Levantines, and Jews," PLOS Genetics, Public Library of Science, vol. 7(4), pages 1-13, April.
    18. Diana Chang & Feng Gao & Andrea Slavney & Li Ma & Yedael Y Waldman & Aaron J Sams & Paul Billing-Ross & Aviv Madar & Richard Spritz & Alon Keinan, 2014. "Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-31, December.
    19. Michaël Aklin & Vera Z. Eichenauer, 2022. "Power Shifts, Emigration, and Population Sorting," CESifo Working Paper Series 9765, CESifo.
    20. Aman Agrawal & Alec M Chiu & Minh Le & Eran Halperin & Sriram Sankararaman, 2020. "Scalable probabilistic PCA for large-scale genetic variation data," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-19, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0022547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.