IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1002410.html
   My bibliography  Save this article

Ancestral Components of Admixed Genomes in a Mexican Cohort

Author

Listed:
  • Nicholas A Johnson
  • Marc A Coram
  • Mark D Shriver
  • Isabelle Romieu
  • Gregory S Barsh
  • Stephanie J London
  • Hua Tang

Abstract

For most of the world, human genome structure at a population level is shaped by interplay between ancient geographic isolation and more recent demographic shifts, factors that are captured by the concepts of biogeographic ancestry and admixture, respectively. The ancestry of non-admixed individuals can often be traced to a specific population in a precise region, but current approaches for studying admixed individuals generally yield coarse information in which genome ancestry proportions are identified according to continent of origin. Here we introduce a new analytic strategy for this problem that allows fine-grained characterization of admixed individuals with respect to both geographic and genomic coordinates. Ancestry segments from different continents, identified with a probabilistic model, are used to construct and study “virtual genomes” of admixed individuals. We apply this approach to a cohort of 492 parent–offspring trios from Mexico City. The relative contributions from the three continental-level ancestral populations—Africa, Europe, and America—vary substantially between individuals, and the distribution of haplotype block length suggests an admixing time of 10–15 generations. The European and Indigenous American virtual genomes of each Mexican individual can be traced to precise regions within each continent, and they reveal a gradient of Amerindian ancestry between indigenous people of southwestern Mexico and Mayans of the Yucatan Peninsula. This contrasts sharply with the African roots of African Americans, which have been characterized by a uniform mixing of multiple West African populations. We also use the virtual European and Indigenous American genomes to search for the signatures of selection in the ancestral populations, and we identify previously known targets of selection in other populations, as well as new candidate loci. The ability to infer precise ancestral components of admixed genomes will facilitate studies of disease-related phenotypes and will allow new insight into the adaptive and demographic history of indigenous people. Author Summary: Admixed individuals, such as African Americans and Latinos, arise from mating between individuals from different continents. Detailed knowledge about the ancestral origin of an admixed population not only provides insight regarding the history of the population itself, but also affords opportunities to study the evolutionary biology of the ancestral populations. Applying novel statistical methods, we analyzed the high-density genotype data of nearly 1,500 Mexican individuals from Mexico City, who are admixed among Indigenous Americans, Europeans, and Africans. The relative contributions from the three continental-level ancestral populations vary substantially between individuals. The European ancestors of these Mexican individuals genetically resemble Southern Europeans, such as the Spaniard and the Portuguese. The Indigenous American ancestry of the Mexicans in our study is largely attributed to the indigenous groups residing in the southwestern region of Mexico, although some individuals have inherited varying degrees of ancestry from the Mayans of the Yucatan Peninsula and other indigenous American populations. A search for signatures of selection, focusing on the parts of the genomes derived from an ancestral population (e.g. Indigenous American), identifies regions in which a genetic variant may have been favored by natural selection in that ancestral population.

Suggested Citation

  • Nicholas A Johnson & Marc A Coram & Mark D Shriver & Isabelle Romieu & Gregory S Barsh & Stephanie J London & Hua Tang, 2011. "Ancestral Components of Admixed Genomes in a Mexican Cohort," PLOS Genetics, Public Library of Science, vol. 7(12), pages 1-12, December.
  • Handle: RePEc:plo:pgen00:1002410
    DOI: 10.1371/journal.pgen.1002410
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002410
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1002410&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1002410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7219), pages 274-274, November.
    2. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7218), pages 98-101, November.
    3. Pardis C. Sabeti & David E. Reich & John M. Higgins & Haninah Z. P. Levine & Daniel J. Richter & Stephen F. Schaffner & Stacey B. Gabriel & Jill V. Platko & Nick J. Patterson & Gavin J. McDonald & Han, 2002. "Detecting recent positive selection in the human genome from haplotype structure," Nature, Nature, vol. 419(6909), pages 832-837, October.
    4. Benjamin F Voight & Sridhar Kudaravalli & Xiaoquan Wen & Jonathan K Pritchard, 2006. "A Map of Recent Positive Selection in the Human Genome," PLOS Biology, Public Library of Science, vol. 4(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Brown & Bogdan Pasaniuc, 2014. "Enhanced Methods for Local Ancestry Assignment in Sequenced Admixed Individuals," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-1, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Beatrix Eugster & Rafael Lalive & Andreas Steinhauer & Josef Zweimüller, 2011. "The Demand for Social Insurance: Does Culture Matter?," Economic Journal, Royal Economic Society, vol. 121(556), pages 413-448, November.
    3. Filippini, Massimo & Wekhof, Tobias, 2021. "The effect of culture on energy efficient vehicle ownership," Journal of Environmental Economics and Management, Elsevier, vol. 105(C).
    4. Sol Katzman & Andrew D Kern & Katherine S Pollard & Sofie R Salama & David Haussler, 2010. "GC-Biased Evolution Near Human Accelerated Regions," PLOS Genetics, Public Library of Science, vol. 6(5), pages 1-13, May.
    5. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    6. Diana Dunca & Sandesh Chopade & María Gordillo-Marañón & Aroon D. Hingorani & Karoline Kuchenbaecker & Chris Finan & Amand F. Schmidt, 2024. "Comparing the effects of CETP in East Asian and European ancestries: a Mendelian randomization study," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Federico Innocenti & Gregory M Cooper & Ian B Stanaway & Eric R Gamazon & Joshua D Smith & Snezana Mirkov & Jacqueline Ramirez & Wanqing Liu & Yvonne S Lin & Cliona Moloney & Shelly Force Aldred & Nat, 2011. "Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue," PLOS Genetics, Public Library of Science, vol. 7(5), pages 1-16, May.
    9. Pierre Luisi & Angelina García & Juan Manuel Berros & Josefina M B Motti & Darío A Demarchi & Emma Alfaro & Eliana Aquilano & Carina Argüelles & Sergio Avena & Graciela Bailliet & Julieta Beltramo & C, 2020. "Fine-scale genomic analyses of admixed individuals reveal unrecognized genetic ancestry components in Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-30, July.
    10. Brielin C Brown & Nicolas L Bray & Lior Pachter, 2018. "Expression reflects population structure," PLOS Genetics, Public Library of Science, vol. 14(12), pages 1-15, December.
    11. Gad Abraham & Michael Inouye, 2014. "Fast Principal Component Analysis of Large-Scale Genome-Wide Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    12. Beatrix Brügger & Rafael Lalive & Josef Zweimüller, 2009. "Does Culture Affect Unemployment? Evidence from the Röstigraben," NRN working papers 2009-10, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
    13. Diana Chang & Alon Keinan, 2014. "Principal Component Analysis Characterizes Shared Pathogenetics from Genome-Wide Association Studies," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
    14. Alejandro Ochoa & John D Storey, 2021. "Estimating FST and kinship for arbitrary population structures," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-36, January.
    15. Victor Ronda & Esben Agerbo & Dorthe Bleses & Preben Bo Mortensen & Anders Børglum & Ole Mors & Michael Rosholm & David M. Hougaard & Merete Nordentoft & Thomas Werge, 2022. "Family disadvantage, gender, and the returns to genetic human capital," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(2), pages 550-578, April.
    16. Feldman, Michael J., 2023. "Spiked singular values and vectors under extreme aspect ratios," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    17. Mateus H. Gouveia & Amy R. Bentley & Thiago P. Leal & Eduardo Tarazona-Santos & Carlos D. Bustamante & Adebowale A. Adeyemo & Charles N. Rotimi & Daniel Shriner, 2023. "Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Clara C Elbers & Carolien G F de Kovel & Yvonne T van der Schouw & Juliaan R Meijboom & Florianne Bauer & Diederick E Grobbee & Gosia Trynka & Jana V van Vliet-Ostaptchouk & Cisca Wijmenga & N Charlot, 2009. "Variants in Neuropeptide Y Receptor 1 and 5 Are Associated with Nutrient-Specific Food Intake and Are Under Recent Selection in Europeans," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-13, September.
    19. Nicola Barban & Elisabetta De Cao & Sonia Oreffice & Climent Quintana-Domeque, 2016. "Assortative Mating on Education: A Genetic Assessment," Working Papers 2016-034, Human Capital and Economic Opportunity Working Group.
    20. Bryc, Katarzyna & Bryc, Wlodek & Silverstein, Jack W., 2013. "Separation of the largest eigenvalues in eigenanalysis of genotype data from discrete subpopulations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 34-43.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1002410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.