IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0008500.html
   My bibliography  Save this article

An Experiment on Prediction Markets in Science

Author

Listed:
  • Johan Almenberg
  • Ken Kittlitz
  • Thomas Pfeiffer

Abstract

Prediction markets are powerful forecasting tools. They have the potential to aggregate private information, to generate and disseminate a consensus among the market participants, and to provide incentives for information acquisition. These market functionalities can be very valuable for scientific research. Here, we report an experiment that examines the compatibility of prediction markets with the current practice of scientific publication. We investigated three settings. In the first setting, different pieces of information were disclosed to the public during the experiment. In the second setting, participants received private information. In the third setting, each piece of information was private at first, but was subsequently disclosed to the public. An automated, subsidizing market maker provided additional incentives for trading and mitigated liquidity problems. We find that the third setting combines the advantages of the first and second settings. Market performance was as good as in the setting with public information, and better than in the setting with private information. In contrast to the first setting, participants could benefit from information advantages. Thus the publication of information does not detract from the functionality of prediction markets. We conclude that for integrating prediction markets into the practice of scientific research it is of advantage to use subsidizing market makers, and to keep markets aligned with current publication practice.

Suggested Citation

  • Johan Almenberg & Ken Kittlitz & Thomas Pfeiffer, 2009. "An Experiment on Prediction Markets in Science," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-7, December.
  • Handle: RePEc:plo:pone00:0008500
    DOI: 10.1371/journal.pone.0008500
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008500
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0008500&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0008500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F., 2006. "Interpreting the predictions of prediction markets," Economics Letters, Elsevier, vol. 91(3), pages 425-429, June.
    2. Colin F. Camerer, 1998. "Can Asset Markets Be Manipulated? A Field Experiment with Racetrack Betting," Journal of Political Economy, University of Chicago Press, vol. 106(3), pages 457-482, June.
    3. Plott, Charles R & Sunder, Shyam, 1982. "Efficiency of Experimental Security Markets with Insider Information: An Application of Rational-Expectations Models," Journal of Political Economy, University of Chicago Press, vol. 90(4), pages 663-698, August.
    4. Ananda Ganguly & John Kagel & Donald Moser, 2000. "Do Asset Market Prices Reflect Traders' Judgment Biases?," Journal of Risk and Uncertainty, Springer, vol. 20(3), pages 219-245, May.
    5. John P A Ioannidis, 2005. "Why Most Published Research Findings Are False," PLOS Medicine, Public Library of Science, vol. 2(8), pages 1-1, August.
    6. Plott, Charles R & Sunder, Shyam, 1988. "Rational Expectations and the Aggregation of Diverse Information in Laboratory Security Markets," Econometrica, Econometric Society, vol. 56(5), pages 1085-1118, September.
    7. Copeland, Thomas E & Friedman, Daniel, 1987. "The Effect of Sequential Information Arrival on Asset Prices: An Experimental Study," Journal of Finance, American Finance Association, vol. 42(3), pages 763-797, July.
    8. Hanson, Robin & Oprea, Ryan & Porter, David, 2006. "Information aggregation and manipulation in an experimental market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(4), pages 449-459, August.
    9. Allen, Franklin & Gale, Douglas, 1992. "Stock-Price Manipulation," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 503-529.
    10. Robin Hanson, 2003. "Combinatorial Information Market Design," Information Systems Frontiers, Springer, vol. 5(1), pages 107-119, January.
    11. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    12. Veiga, Helena & Vorsatz, Marc, 2009. "Price manipulation in an experimental asset market," European Economic Review, Elsevier, vol. 53(3), pages 327-342, April.
    13. Camerer, Colin F, 1987. "Do Biases in Probability Judgment Matter in Markets? Experimental Evidence," American Economic Review, American Economic Association, vol. 77(5), pages 981-997, December.
    14. Anderson, Matthew J. & Sunder, Shyam, 1995. "Professional Traders as Intuitive Bayesians," Organizational Behavior and Human Decision Processes, Elsevier, vol. 64(2), pages 185-202, November.
    15. Ackert, Lucy F. & Church, Bryan K. & Shehata, Mohamed, 1997. "Market behavior in the presence of costly, imperfect information: Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 33(1), pages 61-74, May.
    16. Wolfers, Justin & Zitzewitz, Eric, 2006. "Interpreting Prediction Market Prices as Probabilities," IZA Discussion Papers 2092, Institute of Labor Economics (IZA).
    17. Charles R. Plott & Jorgen Wit & Winston C. Yang, 2003. "Parimutuel betting markets as information aggregation devices: experimental results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 22(2), pages 311-351, September.
    18. Smith, Vernon L & Suchanek, Gerry L & Williams, Arlington W, 1988. "Bubbles, Crashes, and Endogenous Expectations in Experimental Spot Asset Markets," Econometrica, Econometric Society, vol. 56(5), pages 1119-1151, September.
    19. Axelrod, Boris S. & Kulick, Ben J. & Plott, Charles R. & Roust, Kevin A., 2009. "The design of improved parimutuel-type information aggregation mechanisms: Inaccuracies and the long-shot bias as disequilibrium phenomena," Journal of Economic Behavior & Organization, Elsevier, vol. 69(2), pages 170-181, February.
    20. Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan & van de Velden, Henk, 2008. "Expectations and bubbles in asset pricing experiments," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 116-133, July.
    21. Camerer, Colin & Weigelt, Keith, 1991. "Information Mirages in Experimental Asset Markets," The Journal of Business, University of Chicago Press, vol. 64(4), pages 463-493, October.
    22. Forsythe, Robert & Lundholm, Russell, 1990. "Information Aggregation in an Experimental Market," Econometrica, Econometric Society, vol. 58(2), pages 309-347, March.
    23. repec:reg:rpubli:460 is not listed on IDEAS
    24. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    25. Forsythe, Robert & Palfrey, Thomas R & Plott, Charles R, 1982. "Asset Valuation in an Experimental Market," Econometrica, Econometric Society, vol. 50(3), pages 537-567, May.
    26. Archishman Chakraborty & Bilge Yilmaz, 2008. "Microstructure Bluffing with Nested Information," American Economic Review, American Economic Association, vol. 98(2), pages 280-284, May.
    27. Jamal, Karim & Sunder, Shyam, 1996. "Bayesian equilibrium in double auctions populated by biased heuristic traders," Journal of Economic Behavior & Organization, Elsevier, vol. 31(2), pages 273-291, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riekhof, Hans-Christian & Brinkhoff, Stefan, 2014. "Absatzprognosen: Eine empirische Bestandsaufnahme der unternehmerischen Praxis," PFH Forschungspapiere/Research Papers 2014/04, PFH Private University of Applied Sciences, Göttingen.
    2. Panagiotis Papaioannnou & Lucia Russo & George Papaioannou & Constantinos Siettos, 2013. "Can social microblogging be used to forecast intraday exchange rates?," Papers 1310.5306, arXiv.org.
    3. Andreas Heusler & Dominik Molitor & Martin Spann, 2019. "How Knowledge Stock Exchanges can increase student success in Massive Open Online Courses," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-17, September.
    4. Camerer, Colin & Dreber, Anna & Forsell, Eskil & Ho, Teck-Hua & Huber, Jurgen & Johannesson, Magnus & Kirchler, Michael & Almenberg, Johan & Altmejd, Adam & Chan, Taizan & Heikensten, Emma & Holzmeist, 2016. "Evaluating replicability of laboratory experiments in Economics," MPRA Paper 75461, University Library of Munich, Germany.
    5. Panagiotis Papaioannou & Lucia Russo & George Papaioannou & Constantinos Siettos, 2013. "Can social microblogging be used to forecast intraday exchange rates?," Netnomics, Springer, vol. 14(1), pages 47-68, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul J. Healy & Sera Linardi & J. Richard Lowery & John O. Ledyard, 2010. "Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders," Management Science, INFORMS, vol. 56(11), pages 1977-1996, November.
    2. Veiga, Helena & Vorsatz, Marc, 2008. "Aggregation and dissemination of information in experimental asset markets in the presence of a manipulator," DES - Working Papers. Statistics and Econometrics. WS ws084110, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Charles N. Noussair & Steven Tucker, 2013. "Experimental Research On Asset Pricing," Journal of Economic Surveys, Wiley Blackwell, vol. 27(3), pages 554-569, July.
    4. Dorina Tila & David Porter, 2008. "Group Prediction in Information Markets With and Without Trading Information and Price Manipulation Incentives," Working Papers 08-06, Chapman University, Economic Science Institute.
    5. Veiga, Helena & Vorsatz, Marc, 2009. "Price manipulation in an experimental asset market," European Economic Review, Elsevier, vol. 53(3), pages 327-342, April.
    6. Nuzzo, Simone & Morone, Andrea, 2017. "Asset markets in the lab: A literature review," Journal of Behavioral and Experimental Finance, Elsevier, vol. 13(C), pages 42-50.
    7. Lawrence Choo & Todd R. Kaplan & Ro’i Zultan, 2019. "Information aggregation in Arrow–Debreu markets: an experiment," Experimental Economics, Springer;Economic Science Association, vol. 22(3), pages 625-652, September.
    8. Corgnet, Brice & DeSantis, Mark & Porter, David, 2020. "The distribution of information and the price efficiency of markets," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    9. Corgnet, Brice & DeSantis, Mark & Porter, David, 2021. "Information aggregation and the cognitive make-up of market participants," European Economic Review, Elsevier, vol. 133(C).
    10. Snowberg, Erik & Wolfers, Justin & Zitzewitz, Eric, 2013. "Prediction Markets for Economic Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 657-687, Elsevier.
    11. Martin Barner & Francesco Feri & Charles R. Plott, 2005. "On the microstructure of price determination and information aggregation with sequential and asymmetric information arrival in an experimental asset market," Annals of Finance, Springer, vol. 1(1), pages 73-107, January.
    12. RYan Oprea & David Porter & Chris Hibbert & Robin Hanson & Dorina Tila, 2008. "Can Manipulators Mislead Prediction Market Observers?," Working Papers 08-01, Chapman University, Economic Science Institute.
    13. Jason Shachat & Anand Srinivasan, 2022. "Informational Price Cascades and Non-Aggregation of Asymmetric Information in Experimental Asset Markets," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(4), pages 388-407, November.
    14. Brice Corgnet & Cary Deck & Mark DeSantis & Kyle Hampton & Erik O. Kimbrough, 2023. "When Do Security Markets Aggregate Dispersed Information?," Management Science, INFORMS, vol. 69(6), pages 3697-3729, June.
    15. Keser, Claudia & Markstädter, Andreas, 2014. "Informational asymmetries in laboratory asset markets with state-dependent fundamentals," University of Göttingen Working Papers in Economics 207, University of Goettingen, Department of Economics.
    16. Andrea Albertazzi & Friederike Mengel & Ronald Peeters, 2021. "Benchmarking information aggregation in experimental markets," Economic Inquiry, Western Economic Association International, vol. 59(4), pages 1500-1516, October.
    17. Claudia Keser & Andreas Markstädter, 2014. "Informational Asymmetries in Laboratory Asset Markets with State-Dependent Fundamentals," CIRANO Working Papers 2014s-30, CIRANO.
    18. Eric M. Aldrich & Kristian López Vargas, 2020. "Experiments in high-frequency trading: comparing two market institutions," Experimental Economics, Springer;Economic Science Association, vol. 23(2), pages 322-352, June.
    19. Lawrence Choo & Todd R. Kaplan & Ro’i Zultan, 2022. "Manipulation and (Mis)trust in Prediction Markets," Management Science, INFORMS, vol. 68(9), pages 6716-6732, September.
    20. Keser, Claudia & Markstädter, Andreas, 2014. "Informational asymmetries in laboratory asset markets with state-dependent fundamentals," University of Göttingen Working Papers in Economics 207 [rev.], University of Goettingen, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0008500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.