A Top-Down Approach to Infer and Compare Domain-Domain Interactions across Eight Model Organisms
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0005096
Download full text from publisher
References listed on IDEAS
- Yanay Ofran & Burkhard Rost, 2007. "Protein–Protein Interaction Hotspots Carved into Sequences," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-8, July.
- Caroline F. Wright & Sarah A. Teichmann & Jane Clarke & Christopher M. Dobson, 2005. "The importance of sequence diversity in the aggregation and evolution of proteins," Nature, Nature, vol. 438(7069), pages 878-881, December.
- Anton J. Enright & Ioannis Iliopoulos & Nikos C. Kyrpides & Christos A. Ouzounis, 1999. "Protein interaction maps for complete genomes based on gene fusion events," Nature, Nature, vol. 402(6757), pages 86-90, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
- Sayed Mohammad Ebrahim Sahraeian & Byung-Jun Yoon, 2012. "A Network Synthesis Model for Generating Protein Interaction Network Families," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-14, August.
- Ezequiel A Galpern & María I Freiberger & Diego U Ferreiro, 2020. "Large Ankyrin repeat proteins are formed with similar and energetically favorable units," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
- Chuanhua Xing & David B Dunson, 2011. "Bayesian Inference for Genomic Data Integration Reduces Misclassification Rate in Predicting Protein-Protein Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-10, July.
- Rudi Agius & Mieczyslaw Torchala & Iain H Moal & Juan Fernández-Recio & Paul A Bates, 2013. "Characterizing Changes in the Rate of Protein-Protein Dissociation upon Interface Mutation Using Hotspot Energy and Organization," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-27, September.
- Beatriz García-Jiménez & David Juan & Iakes Ezkurdia & Eduardo Andrés-León & Alfonso Valencia, 2010. "Inference of Functional Relations in Predicted Protein Networks with a Machine Learning Approach," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-10, April.
- Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
- John A Capra & Roman A Laskowski & Janet M Thornton & Mona Singh & Thomas A Funkhouser, 2009. "Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-18, December.
- Jiangning Song & Hao Tan & Mingjun Wang & Geoffrey I Webb & Tatsuya Akutsu, 2012. "TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-16, February.
- Mahdi Sarmady & William Dampier & Aydin Tozeren, 2011. "Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-11, June.
- Jiangning Song & Hao Tan & Andrew J Perry & Tatsuya Akutsu & Geoffrey I Webb & James C Whisstock & Robert N Pike, 2012. "PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-23, November.
- Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
- Xue Wang & Yuejin Wu & Rujing Wang & Yuanyuan Wei & Yuanmiao Gui, 2019. "A novel matrix of sequence descriptors for predicting protein-protein interactions from amino acid sequences," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-12, June.
- Sanjana Sudarshan & Sasi B Kodathala & Amruta C Mahadik & Isha Mehta & Brian W Beck, 2014. "Protein-Protein Interface Detection Using the Energy Centrality Relationship (ECR) Characteristic of Proteins," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
- Vijaykumar Yogesh Muley & Akash Ranjan, 2012. "Effect of Reference Genome Selection on the Performance of Computational Methods for Genome-Wide Protein-Protein Interaction Prediction," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0005096. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.