IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0217312.html
   My bibliography  Save this article

A novel matrix of sequence descriptors for predicting protein-protein interactions from amino acid sequences

Author

Listed:
  • Xue Wang
  • Yuejin Wu
  • Rujing Wang
  • Yuanyuan Wei
  • Yuanmiao Gui

Abstract

Protein-protein interactions (PPIs) play an important role in the life activities of organisms. With the availability of large amounts of protein sequence data, PPIs prediction methods have attracted increasing attention. A variety of protein sequence coding methods have emerged, but the training of these methods is particularly time consuming. To solve this issue, we have proposed a novel matrix sequence coding method. Based on deep neural network (DNN) and a novel matrix protein sequence descriptor, we constructed a protein interaction prediction model for predicting PPIs. When performed on human PPIs data, the method achieved an accuracy of 94.34%, a recall of 98.28%, an area under the curve (AUC) of 97.79% and a loss of 23.25%. A non-redundant dataset was used to evaluate this prediction model, and the prediction accuracy is 88.29%. These results indicate that the matrix of sequence (MOS) descriptor can enhance the predictive power of PPIs and reduce training time, which can be a useful complement for future proteomics research. The experimental code and experimental results can be found at https://github.com/smalltalkman/hppi-tensorflow.

Suggested Citation

  • Xue Wang & Yuejin Wu & Rujing Wang & Yuanyuan Wei & Yuanmiao Gui, 2019. "A novel matrix of sequence descriptors for predicting protein-protein interactions from amino acid sequences," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-12, June.
  • Handle: RePEc:plo:pone00:0217312
    DOI: 10.1371/journal.pone.0217312
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217312
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217312&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0217312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anton J. Enright & Ioannis Iliopoulos & Nikos C. Kyrpides & Christos A. Ouzounis, 1999. "Protein interaction maps for complete genomes based on gene fusion events," Nature, Nature, vol. 402(6757), pages 86-90, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    2. Sayed Mohammad Ebrahim Sahraeian & Byung-Jun Yoon, 2012. "A Network Synthesis Model for Generating Protein Interaction Network Families," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-14, August.
    3. Chuanhua Xing & David B Dunson, 2011. "Bayesian Inference for Genomic Data Integration Reduces Misclassification Rate in Predicting Protein-Protein Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-10, July.
    4. Beatriz García-Jiménez & David Juan & Iakes Ezkurdia & Eduardo Andrés-León & Alfonso Valencia, 2010. "Inference of Functional Relations in Predicted Protein Networks with a Machine Learning Approach," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-10, April.
    5. Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
    6. Chittibabu Guda & Brian R King & Lipika R Pal & Purnima Guda, 2009. "A Top-Down Approach to Infer and Compare Domain-Domain Interactions across Eight Model Organisms," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-15, March.
    7. Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
    8. Vijaykumar Yogesh Muley & Akash Ranjan, 2012. "Effect of Reference Genome Selection on the Performance of Computational Methods for Genome-Wide Protein-Protein Interaction Prediction," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0217312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.