IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0009969.html
   My bibliography  Save this article

Inference of Functional Relations in Predicted Protein Networks with a Machine Learning Approach

Author

Listed:
  • Beatriz García-Jiménez
  • David Juan
  • Iakes Ezkurdia
  • Eduardo Andrés-León
  • Alfonso Valencia

Abstract

Background: Molecular biology is currently facing the challenging task of functionally characterizing the proteome. The large number of possible protein-protein interactions and complexes, the variety of environmental conditions and cellular states in which these interactions can be reorganized, and the multiple ways in which a protein can influence the function of others, requires the development of experimental and computational approaches to analyze and predict functional associations between proteins as part of their activity in the interactome. Methodology/Principal Findings: We have studied the possibility of constructing a classifier in order to combine the output of the several protein interaction prediction methods. The AODE (Averaged One-Dependence Estimators) machine learning algorithm is a suitable choice in this case and it provides better results than the individual prediction methods, and it has better performances than other tested alternative methods in this experimental set up. To illustrate the potential use of this new AODE-based Predictor of Protein InterActions (APPIA), when analyzing high-throughput experimental data, we show how it helps to filter the results of published High-Throughput proteomic studies, ranking in a significant way functionally related pairs. Availability: All the predictions of the individual methods and of the combined APPIA predictor, together with the used datasets of functional associations are available at http://ecid.bioinfo.cnio.es/. Conclusions: We propose a strategy that integrates the main current computational techniques used to predict functional associations into a unified classifier system, specifically focusing on the evaluation of poorly characterized protein pairs. We selected the AODE classifier as the appropriate tool to perform this task. AODE is particularly useful to extract valuable information from large unbalanced and heterogeneous data sets. The combination of the information provided by five prediction interaction prediction methods with some simple sequence features in APPIA is useful in establishing reliability values and helpful to prioritize functional interactions that can be further experimentally characterized.

Suggested Citation

  • Beatriz García-Jiménez & David Juan & Iakes Ezkurdia & Eduardo Andrés-León & Alfonso Valencia, 2010. "Inference of Functional Relations in Predicted Protein Networks with a Machine Learning Approach," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-10, April.
  • Handle: RePEc:plo:pone00:0009969
    DOI: 10.1371/journal.pone.0009969
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009969
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0009969&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0009969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anton J. Enright & Ioannis Iliopoulos & Nikos C. Kyrpides & Christos A. Ouzounis, 1999. "Protein interaction maps for complete genomes based on gene fusion events," Nature, Nature, vol. 402(6757), pages 86-90, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franz Ratzinger & Michel Dedeyan & Matthias Rammerstorfer & Thomas Perkmann & Heinz Burgmann & Athanasios Makristathis & Georg Dorffner & Felix Lötsch & Alexander Blacky & Michael Ramharter, 2014. "A Risk Prediction Model for Screening Bacteremic Patients: A Cross Sectional Study," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    2. Sayed Mohammad Ebrahim Sahraeian & Byung-Jun Yoon, 2012. "A Network Synthesis Model for Generating Protein Interaction Network Families," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-14, August.
    3. Chuanhua Xing & David B Dunson, 2011. "Bayesian Inference for Genomic Data Integration Reduces Misclassification Rate in Predicting Protein-Protein Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-10, July.
    4. Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
    5. Chittibabu Guda & Brian R King & Lipika R Pal & Purnima Guda, 2009. "A Top-Down Approach to Infer and Compare Domain-Domain Interactions across Eight Model Organisms," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-15, March.
    6. Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
    7. Xue Wang & Yuejin Wu & Rujing Wang & Yuanyuan Wei & Yuanmiao Gui, 2019. "A novel matrix of sequence descriptors for predicting protein-protein interactions from amino acid sequences," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-12, June.
    8. Vijaykumar Yogesh Muley & Akash Ranjan, 2012. "Effect of Reference Genome Selection on the Performance of Computational Methods for Genome-Wide Protein-Protein Interaction Prediction," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0009969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.