IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0005062.html
   My bibliography  Save this article

The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors

Author

Listed:
  • Aaron J Gruber
  • Rifat J Hussain
  • Patricio O'Donnell

Abstract

Reward intake optimization requires a balance between exploiting known sources of rewards and exploring for new sources. The prefrontal cortex (PFC) and associated basal ganglia circuits are likely candidates as neural structures responsible for such balance, while the hippocampus may be responsible for spatial/contextual information. Although studies have assessed interactions between hippocampus and PFC, and between hippocampus and the nucleus accumbens (NA), it is not known whether 3-way interactions among these structures vary under different behavioral conditions. Here, we investigated these interactions with multichannel recordings while rats explored an operant chamber and while they performed a learned lever-pressing task for reward in the same chamber shortly afterward. Neural firing and local field potentials in the NA core synchronized with hippocampal activity during spatial exploration, but during lever pressing they instead synchronized more strongly with the PFC. The latter is likely due to transient drive of NA neurons by bursting prefrontal activation, as in vivo intracellular recordings in anesthetized rats revealed that NA up states can transiently synchronize with spontaneous PFC activity and PFC stimulation with a bursting pattern reliably evoked up states in NA neurons. Thus, the ability to switch synchronization in a task-dependent manner indicates that the NA core can dynamically select its inputs to suit environmental demands, thereby contributing to decision-making, a function that was thought to primarily depend on the PFC.

Suggested Citation

  • Aaron J Gruber & Rifat J Hussain & Patricio O'Donnell, 2009. "The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-10, April.
  • Handle: RePEc:plo:pone00:0005062
    DOI: 10.1371/journal.pone.0005062
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005062
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0005062&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0005062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathaniel D. Daw & John P. O'Doherty & Peter Dayan & Ben Seymour & Raymond J. Dolan, 2006. "Cortical substrates for exploratory decisions in humans," Nature, Nature, vol. 441(7095), pages 876-879, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas A Donnelly & Tahl Holtzman & P Dylan Rich & Alejo J Nevado-Holgado & Anushka B P Fernando & Gert Van Dijck & Tobias Holzhammer & Oliver Paul & Patrick Ruther & Ole Paulsen & Trevor W Robbins , 2014. "Oscillatory Activity in the Medial Prefrontal Cortex and Nucleus Accumbens Correlates with Impulsivity and Reward Outcome," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    2. Shi, Yuwei & Herniman, John, 2023. "The role of expectation in innovation evolution: Exploring hype cycles," Technovation, Elsevier, vol. 119(C).
    3. Sashittal, Hemant C. & Sriramachandramurthy, Rajendran & Hodis, Monica, 2012. "Targeting college students on Facebook? How to stop wasting your money," Business Horizons, Elsevier, vol. 55(5), pages 495-507.
    4. Peter S. Riefer & Bradley C. Love, 2015. "Unfazed by Both the Bull and Bear: Strategic Exploration in Dynamic Environments," Games, MDPI, vol. 6(3), pages 1-11, August.
    5. Makoto Naruse & Eiji Yamamoto & Takashi Nakao & Takuma Akimoto & Hayato Saigo & Kazuya Okamura & Izumi Ojima & Georg Northoff & Hirokazu Hori, 2018. "Why is the environment important for decision making? Local reservoir model for choice-based learning," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    6. Christina Fang & Daniel Levinthal, 2009. "Near-Term Liability of Exploitation: Exploration and Exploitation in Multistage Problems," Organization Science, INFORMS, vol. 20(3), pages 538-551, June.
    7. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
    8. Jean Daunizeau & Hanneke E M den Ouden & Matthias Pessiglione & Stefan J Kiebel & Klaas E Stephan & Karl J Friston, 2010. "Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-10, December.
    9. Elyse H Norton & Stephen M Fleming & Nathaniel D Daw & Michael S Landy, 2017. "Suboptimal Criterion Learning in Static and Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-28, January.
    10. Ayaka Kato & Kenji Morita, 2016. "Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-41, October.
    11. Elise Payzan-LeNestour & Peter Bossaerts, 2011. "Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    12. Pérez-Centeno, Victor, 2018. "Brain-driven entrepreneurship research: Expanded review and research agenda towards entrepreneurial enhancement," Working Papers 02/18, Institut für Mittelstandsforschung (IfM) Bonn.
    13. Oded Berger-Tal & Jonathan Nathan & Ehud Meron & David Saltz, 2014. "The Exploration-Exploitation Dilemma: A Multidisciplinary Framework," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    14. Ian Krajbich & Todd Hare & Björn Bartling & Yosuke Morishima & Ernst Fehr, 2015. "A Common Mechanism Underlying Food Choice and Social Decisions," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-24, October.
    15. Maime Guan & Ryan Stokes & Joachim Vandekerckhove & Michael D. Lee, 2020. "A cognitive modeling analysis of risk in sequential choice tasks}," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 823-850, September.
    16. Kiyohito Iigaya & Sanghyun Yi & Iman A. Wahle & Sandy Tanwisuth & Logan Cross & John P. O’Doherty, 2023. "Neural mechanisms underlying the hierarchical construction of perceived aesthetic value," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Matthew R Nassar & Joshua I Gold, 2013. "A Healthy Fear of the Unknown: Perspectives on the Interpretation of Parameter Fits from Computational Models in Neuroscience," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-6, April.
    18. Maël Lebreton & Karin Bacily & Stefano Palminteri & Jan B Engelmann, 2019. "Contextual influence on confidence judgments in human reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    19. repec:cup:judgdm:v:17:y:2022:i:4:p:691-719 is not listed on IDEAS
    20. Ahmed H. Alsharif & Nor Zafir Md Salleh & Rohaizat Baharun & Alharthi Rami Hashem E & Aida Azlina Mansor & Javed Ali & Alhamzah F. Abbas, 2021. "Neuroimaging Techniques in Advertising Research: Main Applications, Development, and Brain Regions and Processes," Sustainability, MDPI, vol. 13(11), pages 1-25, June.
    21. Daniel Bennett & Stefan Bode & Maja Brydevall & Hayley Warren & Carsten Murawski, 2016. "Intrinsic Valuation of Information in Decision Making under Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-21, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0005062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.