IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0004740.html
   My bibliography  Save this article

Morphological Diversity and the Roles of Contingency, Chance and Determinism in African Cichlid Radiations

Author

Listed:
  • Kyle A Young
  • Jos Snoeks
  • Ole Seehausen

Abstract

Background: Deterministic evolution, phylogenetic contingency and evolutionary chance each can influence patterns of morphological diversification during adaptive radiation. In comparative studies of replicate radiations, convergence in a common morphospace implicates determinism, whereas non-convergence suggests the importance of contingency or chance. Methodology/Principal Findings: The endemic cichlid fish assemblages of the three African great lakes have evolved similar sets of ecomorphs but show evidence of non-convergence when compared in a common morphospace, suggesting the importance of contingency and/or chance. We then analyzed the morphological diversity of each assemblage independently and compared their axes of diversification in the unconstrained global morphospace. We find that despite differences in phylogenetic composition, invasion history, and ecological setting, the three assemblages are diversifying along parallel axes through morphospace and have nearly identical variance-covariance structures among morphological elements. Conclusions/Significance: By demonstrating that replicate adaptive radiations are diverging along parallel axes, we have shown that non-convergence in the common morphospace is associated with convergence in the global morphospace. Applying these complimentary analyses to future comparative studies will improve our understanding of the relationship between morphological convergence and non-convergence, and the roles of contingency, chance and determinism in driving morphological diversification.

Suggested Citation

  • Kyle A Young & Jos Snoeks & Ole Seehausen, 2009. "Morphological Diversity and the Roles of Contingency, Chance and Determinism in African Cichlid Radiations," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-8, March.
  • Handle: RePEc:plo:pone00:0004740
    DOI: 10.1371/journal.pone.0004740
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004740
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0004740&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0004740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul B. Rainey & Michael Travisano, 1998. "Adaptive radiation in a heterogeneous environment," Nature, Nature, vol. 394(6688), pages 69-72, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin J Parsons & W James Cooper & R Craig Albertson, 2009. "Limits of Principal Components Analysis for Producing a Common Trait Space: Implications for Inferring Selection, Contingency, and Chance in Evolution," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-4, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    2. Ryo Mizuuchi & Taro Furubayashi & Norikazu Ichihashi, 2022. "Evolutionary transition from a single RNA replicator to a multiple replicator network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Nicholas Leiby & Christopher J Marx, 2014. "Metabolic Erosion Primarily Through Mutation Accumulation, and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli," PLOS Biology, Public Library of Science, vol. 12(2), pages 1-10, February.
    4. Griswold, Cortland K. & Henry, Thomas A., 2012. "Epistasis can increase multivariate trait diversity in haploid non-recombining populations," Theoretical Population Biology, Elsevier, vol. 82(3), pages 209-221.
    5. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.
    6. N. Frazão & A. Konrad & M. Amicone & E. Seixas & D. Güleresi & M. Lässig & I. Gordo, 2022. "Two modes of evolution shape bacterial strain diversity in the mammalian gut for thousands of generations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Safar Vafadar & Maryam Shahdoust & Ata Kalirad & Pooya Zakeri & Mehdi Sadeghi, 2021. "Competitive exclusion during co-infection as a strategy to prevent the spread of a virus: A computational perspective," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-18, February.
    8. Amandine Nucci & Eduardo P. C. Rocha & Olaya Rendueles, 2022. "Adaptation to novel spatially-structured environments is driven by the capsule and alters virulence-associated traits," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0004740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.