IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v394y1998i6688d10.1038_27900.html
   My bibliography  Save this article

Adaptive radiation in a heterogeneous environment

Author

Listed:
  • Paul B. Rainey

    (University of Oxford)

  • Michael Travisano

    (University of Oxford)

Abstract

Successive adaptive radiations have played a pivotal role in the evolution of biological diversity1,2,3. The effects of adaptive radiation are often seen4,5,6, but the underlying causes are difficult to disentangle and remain unclear7,8,9. Here we examine directly therole of ecological opportunity and competition in driving genetic diversification. We use the common aerobic bacterium Pseudomonas fluorescens10, which evolves rapidly under novel environmental conditions to generate a large repertoire of mutants11,12,13. When provided with ecological opportunity (afforded by spatial structure), identical populations diversify morphologically, but when ecological opportunity is restricted there is no such divergence. In spatially structured environments, the evolution of variant morphs follows a predictable sequence and we show that competition among the newly evolved niche-specialists maintains this variation. These results demonstrate that the elementary processes of mutation and selection alone are suifficient to promote rapid proliferation of new designs and support the theory that trade-offs in competitive ability drive adaptive radiation14,15.

Suggested Citation

  • Paul B. Rainey & Michael Travisano, 1998. "Adaptive radiation in a heterogeneous environment," Nature, Nature, vol. 394(6688), pages 69-72, July.
  • Handle: RePEc:nat:nature:v:394:y:1998:i:6688:d:10.1038_27900
    DOI: 10.1038/27900
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/27900
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/27900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    2. Amandine Nucci & Eduardo P. C. Rocha & Olaya Rendueles, 2022. "Adaptation to novel spatially-structured environments is driven by the capsule and alters virulence-associated traits," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Nicholas Leiby & Christopher J Marx, 2014. "Metabolic Erosion Primarily Through Mutation Accumulation, and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli," PLOS Biology, Public Library of Science, vol. 12(2), pages 1-10, February.
    4. Griswold, Cortland K. & Henry, Thomas A., 2012. "Epistasis can increase multivariate trait diversity in haploid non-recombining populations," Theoretical Population Biology, Elsevier, vol. 82(3), pages 209-221.
    5. N. Frazão & A. Konrad & M. Amicone & E. Seixas & D. Güleresi & M. Lässig & I. Gordo, 2022. "Two modes of evolution shape bacterial strain diversity in the mammalian gut for thousands of generations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Safar Vafadar & Maryam Shahdoust & Ata Kalirad & Pooya Zakeri & Mehdi Sadeghi, 2021. "Competitive exclusion during co-infection as a strategy to prevent the spread of a virus: A computational perspective," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-18, February.
    7. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.
    8. Ryo Mizuuchi & Taro Furubayashi & Norikazu Ichihashi, 2022. "Evolutionary transition from a single RNA replicator to a multiple replicator network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Kyle A Young & Jos Snoeks & Ole Seehausen, 2009. "Morphological Diversity and the Roles of Contingency, Chance and Determinism in African Cichlid Radiations," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-8, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:394:y:1998:i:6688:d:10.1038_27900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.