IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0004299.html
   My bibliography  Save this article

Extraction and Characterization of Essential Discharge Patterns from Multisite Recordings of Spiking Ongoing Activity

Author

Listed:
  • Riccardo Storchi
  • Gabriele E M Biella
  • Diego Liberati
  • Giuseppe Baselli

Abstract

Background: Neural activation patterns proceed often by schemes or motifs distributed across the involved cortical networks. As neurons are correlated, the estimate of all possible dependencies quickly goes out of control. The complex nesting of different oscillation frequencies and their high non-stationariety further hamper any quantitative evaluation of spiking network activities. The problem is exacerbated by the intrinsic variability of neural patterns. Methodology/Principal Findings: Our technique introduces two important novelties and enables to insulate essential patterns on larger sets of spiking neurons and brain activity regimes. First, the sampling procedure over N units is based on a fixed spike number k in order to detect N-dimensional arrays (k-sequences), whose sum over all dimension is k. Then k-sequences variability is greatly reduced by a hierarchical separative clustering, that assigns large amounts of distinct k-sequences to few classes. Iterative separations are stopped when the dimension of each cluster comes to be smaller than a certain threshold. As threshold tuning critically impacts on the number of classes extracted, we developed an effective cost criterion to select the shortest possible description of our dataset. Finally we described three indexes (C,S,R) to evaluate the average pattern complexity, the structure of essential classes and their stability in time. Conclusions/Significance: We validated this algorithm with four kinds of surrogated activity, ranging from random to very regular patterned. Then we characterized a selection of ongoing activity recordings. By the S index we identified unstable, moderatly and strongly stable patterns while by the C and the R indices we evidenced their non-random structure. Our algorithm seems able to extract interesting and non-trivial spatial dynamics from multisource neuronal recordings of ongoing and potentially stimulated activity. Combined with time-frequency analysis of LFPs could provide a powerful multiscale approach linking population oscillations with multisite discharge patterns.

Suggested Citation

  • Riccardo Storchi & Gabriele E M Biella & Diego Liberati & Giuseppe Baselli, 2009. "Extraction and Characterization of Essential Discharge Patterns from Multisite Recordings of Spiking Ongoing Activity," PLOS ONE, Public Library of Science, vol. 4(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0004299
    DOI: 10.1371/journal.pone.0004299
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004299
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0004299&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0004299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. L. Vincent & G. H. Patel & M. D. Fox & A. Z. Snyder & J. T. Baker & D. C. Van Essen & J. M. Zempel & L. H. Snyder & M. Corbetta & M. E. Raichle, 2007. "Intrinsic functional architecture in the anaesthetized monkey brain," Nature, Nature, vol. 447(7140), pages 83-86, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Protachevicz, Paulo Ricardo & Borges, Fernando da Silva & Batista, Antonio Marcos & Baptista, Murilo da Silva & Caldas, Iberê Luiz & Macau, Elbert Einstein Nehrer & Lameu, Ewandson Luiz, 2023. "Plastic neural network with transmission delays promotes equivalence between function and structure," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Laura Biagi & Sofia Allegra Crespi & Michela Tosetti & Maria Concetta Morrone, 2015. "BOLD Response Selective to Flow-Motion in Very Young Infants," PLOS Biology, Public Library of Science, vol. 13(9), pages 1-22, September.
    3. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Anandamohan Ghosh & Y Rho & A R McIntosh & R Kötter & V K Jirsa, 2008. "Noise during Rest Enables the Exploration of the Brain's Dynamic Repertoire," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-12, October.
    6. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    7. Robert Leech & Gregory Scott & Robin Carhart-Harris & Federico Turkheimer & Simon D Taylor-Robinson & David J Sharp, 2014. "Spatial Dependencies between Large-Scale Brain Networks," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    8. Biyu J He & John M Zempel, 2013. "Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    9. Adrián Ponce-Alvarez & Biyu J He & Patric Hagmann & Gustavo Deco, 2015. "Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    10. Andrea I. Luppi & Lynn Uhrig & Jordy Tasserie & Camilo M. Signorelli & Emmanuel A. Stamatakis & Alain Destexhe & Bechir Jarraya & Rodrigo Cofre, 2024. "Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    11. Nicole Eichert & Jordan DeKraker & Amy F. D. Howard & Istvan N. Huszar & Silei Zhu & Jérôme Sallet & Karla L. Miller & Rogier B. Mars & Saad Jbabdi & Boris C. Bernhardt, 2024. "Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Toshiyuki Hirabayashi & Yuji Nagai & Yuki Hori & Yukiko Hori & Kei Oyama & Koki Mimura & Naohisa Miyakawa & Haruhiko Iwaoki & Ken-ichi Inoue & Tetsuya Suhara & Masahiko Takada & Makoto Higuchi & Takaf, 2024. "Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Satohiro Tajima & Toru Yanagawa & Naotaka Fujii & Taro Toyoizumi, 2015. "Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-28, November.
    14. M. Lavanga & O. De Wel & A. Caicedo & K. Jansen & A. Dereymaeker & G. Naulaers & S. Van Huffel, 2017. "Monitoring Effective Connectivity in the Preterm Brain: A Graph Approach to Study Maturation," Complexity, Hindawi, vol. 2017, pages 1-13, October.
    15. Farnaz Zamani Esfahlani & Joshua Faskowitz & Jonah Slack & Bratislav Mišić & Richard F. Betzel, 2022. "Local structure-function relationships in human brain networks across the lifespan," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Lu, Hu & Wei, Hui, 2012. "Detection of community structure in networks based on community coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6156-6164.
    17. Holger Finger & Marlene Bönstrup & Bastian Cheng & Arnaud Messé & Claus Hilgetag & Götz Thomalla & Christian Gerloff & Peter König, 2016. "Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modelin," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    18. Joseph A Lombardo & Matthew V Macellaio & Bing Liu & Stephanie E Palmer & Leslie C Osborne, 2018. "State dependence of stimulus-induced variability tuning in macaque MT," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-28, October.
    19. Eric C Leuthardt & Gloria Guzman & S Kathleen Bandt & Carl Hacker & Ananth K Vellimana & David Limbrick & Mikhail Milchenko & Pamela Lamontagne & Benjamin Speidel & Jarod Roland & Michelle Miller-Thom, 2018. "Integration of resting state functional MRI into clinical practice - A large single institution experience," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0004299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.