IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i23p6156-6164.html
   My bibliography  Save this article

Detection of community structure in networks based on community coefficients

Author

Listed:
  • Lu, Hu
  • Wei, Hui

Abstract

Determining community structure in networks is fundamental to the analysis of the structural and functional properties of those networks, including social networks, computer networks, and biological networks. Modularity function Q, which was proposed by Newman and Girvan, was once the most widely used criterion for evaluating the partition of a network into communities. However, modularity Q is subject to a serious resolution limit. In this paper, we propose a new function for evaluating the partition of a network into communities. This is called community coefficient C. Using community coefficient C, we can automatically identify the ideal number of communities in the network, without any prior knowledge. We demonstrate that community coefficient C is superior to the modularity Q and does not have a resolution limit. We also compared the two widely used community structure partitioning methods, the hierarchical partitioning algorithm and the normalized cuts (Ncut) spectral partitioning algorithm. We tested these methods on computer-generated networks and real-world networks whose community structures were already known. The Ncut algorithm and community coefficient C were found to produce better results than hierarchical algorithms. Unlike several other community detection methods, the proposed method effectively partitioned the networks into different community structures and indicated the correct number of communities.

Suggested Citation

  • Lu, Hu & Wei, Hui, 2012. "Detection of community structure in networks based on community coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6156-6164.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:6156-6164
    DOI: 10.1016/j.physa.2012.06.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711200622X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.06.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Junhua & Zhang, Shihua & Zhang, Xiang-Sun, 2008. "Detecting community structure in complex networks based on a measure of information discrepancy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1675-1682.
    2. J. L. Vincent & G. H. Patel & M. D. Fox & A. Z. Snyder & J. T. Baker & D. C. Van Essen & J. M. Zempel & L. H. Snyder & M. Corbetta & M. E. Raichle, 2007. "Intrinsic functional architecture in the anaesthetized monkey brain," Nature, Nature, vol. 447(7140), pages 83-86, May.
    3. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    2. Deng, Zheng-Hong & Qiao, Hong-Hai & Song, Qun & Gao, Li, 2019. "A complex network community detection algorithm based on label propagation and fuzzy C-means," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 217-226.
    3. Hu Lu & Shengtao Yang & Longnian Lin & Baoming Li & Hui Wei, 2013. "Prediction of Rat Behavior Outcomes in Memory Tasks Using Functional Connections among Neurons," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wang & Jing Wang & Jingfeng Guo & Liya Wang & Chunying Zhang & Bin Liu, 2023. "Research Progress of Complex Network Modeling Methods Based on Uncertainty Theory," Mathematics, MDPI, vol. 11(5), pages 1-27, March.
    2. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    3. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    5. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    6. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    7. Wang, Wenjun & Liu, Dong & Liu, Xiao & Pan, Lin, 2013. "Fuzzy overlapping community detection based on local random walk and multidimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6578-6586.
    8. Chen, Duanbing & Shang, Mingsheng & Lv, Zehua & Fu, Yan, 2010. "Detecting overlapping communities of weighted networks via a local algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4177-4187.
    9. Zhou, Kuang & Martin, Arnaud & Pan, Quan, 2015. "A similarity-based community detection method with multiple prototype representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 519-531.
    10. Chang, Zhenhai & Yin, Xianjun & Jia, Caiyan & Wang, Xiaoyang, 2018. "Mixture models with entropy regularization for community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 339-350.
    11. Lan Huang & Guishen Wang & Yan Wang & Enrico Blanzieri & Chao Su, 2013. "Link Clustering with Extended Link Similarity and EQ Evaluation Division," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-18, June.
    12. Adrián Ponce-Alvarez & Biyu J He & Patric Hagmann & Gustavo Deco, 2015. "Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    13. Mario Levorato & Rosa Figueiredo & Yuri Frota & Lúcia Drummond, 2017. "Evaluating balancing on social networks through the efficient solution of correlation clustering problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 467-498, December.
    14. Nicole Eichert & Jordan DeKraker & Amy F. D. Howard & Istvan N. Huszar & Silei Zhu & Jérôme Sallet & Karla L. Miller & Rogier B. Mars & Saad Jbabdi & Boris C. Bernhardt, 2024. "Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Abdolhosseini-Qomi, Amir Mahdi & Yazdani, Naser & Asadpour, Masoud, 2020. "Overlapping communities and the prediction of missing links in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    16. Wu, Jianshe & Lu, Rui & Jiao, Licheng & Liu, Fang & Yu, Xin & Wang, Da & Sun, Bo, 2013. "Phase transition model for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1287-1301.
    17. Zhang, Dawei & Xie, Fuding & Zhang, Yong & Dong, Fangyan & Hirota, Kaoru, 2010. "Fuzzy analysis of community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5319-5327.
    18. Shen, Yi & Pei, Wenjiang & Wang, Kai & Li, Tao & Wang, Shaoping, 2008. "Recursive filtration method for detecting community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6663-6670.
    19. Toshiyuki Hirabayashi & Yuji Nagai & Yuki Hori & Yukiko Hori & Kei Oyama & Koki Mimura & Naohisa Miyakawa & Haruhiko Iwaoki & Ken-ichi Inoue & Tetsuya Suhara & Masahiko Takada & Makoto Higuchi & Takaf, 2024. "Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:6156-6164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.